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Learning Algorithms

Verification and Training

An increase in deployment of learning-based algorithms J

Extremely fragile wrt input perturbations | Adversarial Perturbations?

Small changes in the input

l

Large changes in the output

]'C. Szegedy, et al. Intriguing properties of neural networks, ICLR, 2014
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@ Guaranteeing robustness of learning algorithms is critical in their real-world applications
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Robustness of learning algorithm

Input perturbation set U and unsafe output domain Synsate:
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Learning Algorithms

Verification and Training

An increase in deployment of learning-based algorithms J

“pig” “airliner”
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@ Guaranteeing robustness of learning algorithms is critical in their real-world applications

Robustness of learning algorithm

Input perturbation set U and unsafe output domain Synsate:

N(U) N Sunsafe = @

@ Verification: For a given learning algorithm can we check its robustness?

@ Training: how to design robust learning algorithms?

]'C. Szegedy, et al. Intriguing properties of neural networks, ICLR, 2014
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Input-output Lipschitz Bounds
A framework for robustness analysis

Goal: over-approximate N(2/) with N(i/) and check if N(U) N Synsate = 0. J
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Input-output Lipschitz Bounds
A framework for robustness analysis

Goal: over-approximate N(2/) with N(i/) and check if N(U) N Synsate = 0. J

Lipschitz bound N (1)
U —+| > N(u
[IN(uz) — N(v)|| < LipN|lu — v||, for every u,v € U
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Input-output Lipschitz Bounds
A framework for robustness analysis

Goal: over-approximate N(2/) with N(i/) and check if N(U) N Synsate = 0. J

Lipschitz bound

B(u,r)

B(N(u), rLip(N))

@ A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: analysis and efficient estimation.
NeurlPS, 2018

@ Mahyar Fazlyab, et al, Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
Networks. NeurlPS, 2019

@ Alexandre Araujo, et al, A Unified Algebraic Perspective on Lipschitz Neural Networks, /ICLR, 2023
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Input-output Lipschitz Bounds
A framework for robustness analysis

Goal: over-approximate N(2/) with N(i/) and check if N(U) N Synsate = 0. J

Lipschitz bound

B(N(u), rLip(N))

In this talk: use Monotone Operator Theory to estimate Lipschitz bound
of learning algorithms J
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Monotone Operator Theory

A classical framework in functional analysis

Let H be a Hilbert space with inner product (-,-);. Then F: H — H is a
monotone operator if

(F(z) = F(y),z —y)nu >0, for all 2,y

and is strongly monotone with parameter m > 0 if

(F(z) = F(y),z —y)u = m|z — yH%.L, for all =,y
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Monotone Operator Theory

A classical framework in functional analysis

Let H be a Hilbert space with inner product (-,-);. Then F: H — H is a
monotone operator if

(F(z) = F(y),x —y)u > 0, for all z,y
and is strongly monotone with parameter m > 0 if

(F(z) = F(y),z —y)u = m|z — yl!%, for all =,y

e Minty (1962), Browder (1967), Rockafellar (1966)
@ Bauschke and Combettes (2017), Ryu and and Boyd (2016)

Optimization Dynamical systems
mingern  f(2) &= f(x)
f is convex iff V f is monotone f is contracting wrt £o-norm iff —f is

strongly monotone
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Monotone Operator Theory

A classical framework in functional analysis

Let H be a Hilbert space with inner product (-,-);. Then F: H — H is a
monotone operator if

(F(z) = F(y),x —y)u > 0, for all z,y

and is strongly monotone with parameter m > 0 if

(F(z) = F(y),z —y)u = m|z — yH%{, for all =,y

e Minty (1962), Browder (1967), Rockafellar (1966)
@ Bauschke and Combettes (2017), Ryu and and Boyd (2016)

Theorem (classical)

Let F : R™ — R™ be a strongly monotone operator wrt to (-, -)gn, then
© F(z) =0 has a unique solution z*, and

@ z* can be computed using the average iteration z;11 = (1 — 0)xy, + OF (zy).
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Monotone Operator Theory
Logarithmic norm

Definition: Logarithmic norm

1 T
Given a matrix A € R™*™ and a norm || - ||: pa(A) = ‘)‘maX(A +A°)
ot hA] 1 () = mae (ag; + 3 ;o)
p(A) = lim, —
h—0 Poo(A) = max (aii + Z Jai;])
e directional derivative of matrix norm || - || in direction of A at point Ij,.

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024

S. Jafarpour (CU Boulder) Non-Euclidean Monotone Operator Theory February 14, 2025



Monotone Operator Theory
Logarithmic norm

Definition: Logarithmic norm

1 T
Given a matrix A € R"*™ and a norm |- || p2(A) = 3Amax(A+ A7)
. |+ hA| -1 p1(A) = e (aj; + Z |azj
p(A) = 111rn+ —
h—0 Poo(A) = max (aii + Z Jai;])
e directional derivative of matrix norm || - || in direction of A at point Ij,.

@ In the literature: one-sided Lipschitz constant, matrix measure

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024
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Given a matrix A € R"*™ and a norm |- || p2(A) = 3Amax(A+ A7)
. |+ hA| -1 p1(A) = e (aj; + Z |azj
p(A) = 111rn+ —
h—0 Poo(A) = max (aii + Z Jai;])
e directional derivative of matrix norm || - || in direction of A at point Ij,.

@ In the literature: one-sided Lipschitz constant, matrix measure

Theorem?(Logarithmic norms and monotone operators)

F:R™ — R" is a monotone operator if and only if po(—D,F(z)) <0, for every x € R"

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024
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Monotone Operator Theory
Logarithmic norm

Definition: Logarithmic norm

1 T
Given a matrix A € R"*™ and a norm |- || p2(A) = 3Amax(A+ A7)
. |+ hA| -1 p1(A) = e (aj; + Z |azj
p(A) = 111rn+ —
h—0 Poo(A) = max aZZ + Z |a”
e directional derivative of matrix norm || - || in direction of A at point Ij,.

@ In the literature: one-sided Lipschitz constant, matrix measure

Theorem?(Logarithmic norms and monotone operators)

F:R™ — R" is a monotone operator if and only if po(—D,F(z)) <0, for every x € R"

Extend monotone operator theory to non-Euclidean norm spaces )

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024
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Non-Euclidean Monotone Operator Theory

Definition and characterizations

Let || - || be a norm on R™. Then F : R” — R" is a monotone wrt to | - || if
p(=DF(z)) <0, forallz

and is strongly monotone with parameter m > 0 if

p)|(—=DF(x)) < —m, for all z

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024
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Non-Euclidean Monotone Operator Theory

Definition and characterizations

Let || - || be a norm on R™. Then F : R” — R" is a monotone wrt to | - || if
p(=DF(z)) <0, for all z

and is strongly monotone with parameter m > 0 if

p)|(—=DF(x)) < —m, for all z

Theorem (Non-Euclidean version)3

Let F: R™ — R™ be a strongly monotone operator wrt to a norm || - ||, then
© F(z) =0 has a unique solution z*, and

@ z* can be computed using the average iteration xp11 = (1 — 0)xx + OF (z).

3A. Davydov, SJ, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. JMLR, 2024
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Implicit Neural Networks

Definition via fixed-point equations

ol (o] o o
ol o] |o 5
Uo7 o-lo oY u Yy
ol [o] |o o .
ol [o] |o o
1 T2 X3 Lk
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Implicit Neural Networks

Definition via fixed-point equations
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@ Feedforward neural networks: @ Implicit neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y = Apa® + by y=Cx+c
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Implicit Neural Networks

Definition via fixed-point equations
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@ Feedforward neural networks: @ Implicit neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y = Apa® + by y=Cx+c

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁ’(y) <l1forall z,y e R
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Implicit Neural Networks

Definition via fixed-point equations

O O O O
ol gl sl 8 '
U — 9) "l O 1O S @) = y u = y

O O O O T
O O O O
Iy T2 T3 Lk

@ Feedforward neural networks: @ Implicit neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function
@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R
Notion of Layer: output is defined implicitly as a function of inputJ

e.g., fixed-point equation, differential equations, optimization problem
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Implicit Neural Networks

Definition via fixed-point equations

O O O O
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@ Feedforward neural networks: @ Implicit neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R

@ S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models, NeurlPS, 2019
@ L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. SIMODS, 2019 J
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Implicit Neural Networks

Definition via fixed-point equations

O O O O
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@ Feedforward neural networks: @ Implicit neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R

Advantages: Representation, Performance, Memory J
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Implicit Neural Networks
An operator theoretic perspective

Main Questions

x = ®(Az + Bu+0b)
y=Cx—+c
@ Existence and computation of solutions?

@ How to estimate the input-output x — w robustness?
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Implicit Neural Networks
An operator theoretic perspective

Main Questions

x = ®(Az + Bu+0b)
y=Cx—+c
© Existence and computation of solutions?

@ How to estimate the input-output = > u robustness?

Key insight

Fixed-point equation = Operator theory
z = ®(Ax + Bu+b) Ny(z) =z — ®(Az + Bu +b)
fixed-points = zeros of N, (x)
robustness S sensitivity wrt u

v

@ We can use tools from monotone operator theory to study implicit neural networks
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Implicit Neural Networks

Well-posedness and robustness

Main observation

If too(A) < 1 then N, is a monotone operator wrt | - ||co-

4SJ, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In NeurlPs 2021
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Well-posedness and robustness

Main observation

If too(A) < 1 then N, is a monotone operator wrt | - ||co-

Theorem*

If poo(A) < 1 then

QO = = ®(Az + Bu + b) has a unique solution z;;

@ =z can be computed using average iterations for z = ®(Ax + Bu + b)

Bl|oo
O | — z}lloo < il lle — vlleo

4SJ, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In NeurlPs 2021
S. Jafarpour (CU Boulder) Non-Euclidean Monotone Operator Theory February 14, 2025 9 /22



Implicit Neural Networks

Well-posedness and robustness

Main observation

If too(A) < 1 then N, is a monotone operator wrt | - ||co-

Theorem*

If poo(A) < 1 then

QO = = ®(Az + Bu + b) has a unique solution z;;

@ =z can be computed using average iterations for z = ®(Ax + Bu + b)

Bl|oo
O | — z}lloo < il lle — vlleo

*

w —, v = y = Lip,,, =Lip, .:Lip,._,,
Lipu—)zf& Lipz:&_}y
_ Clleo|[Blloo

Li = Mool P oo
P T ()

4SJ, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In NeurlPs 2021
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Training Implicit Neural Networks
Promoting robustness

© loss function £
@ training data (U, 7)Y,

N
| - .
D

T; = (I)(A.%'i 4+ Bu; + b)
@ v < 1is a hyperparameter and A > 0 is a regularization parameter

@ training optimization problem is solved via SGD
@ at each step of SGD, x; = ®(Ax; + Bu; + b) is solved using the average-iterations
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Numerical Experiments

Lipschitz bound for Implicit Neural Networks

o MNIST dataset: 28 x 28 pixel handwritten digits between 0 — 9, 60,000 training images
and 10,000 test images.

@ implicit neural network order: n = 100 and v = 0.95

@ loss function: cross entropy

Test error vs Lipschitz constant on MNIST handwritten digits

Improvements:
'Y ® \=10" @ (A =0): two orders of magnitude
20 ® =107 wrt. IDL and wrt. MON
A=10"3
s A=10-4 @ (A =10"2): three orders of
5 1 A=107° magnitude wrt. IDL and one
E ® =0 order of magnitude wrt. MON
w0 10<
= * : ,{ADOI;\I @ (A =10"?): four orders of
51 magnitude wrt. IDL and two
orders of magnitude wrt. MON
00 hd J
10! 102 10° 104 10°

Lipschitz constant
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Numerical Experiments
Empirical robustness of INNs

@ perturbation: inversion attack u,qy = u + € sign(%1784 —u)

LLLLLLLLLLLLLLL

GlolslH]alalal ¢
elo]sld]alslal s
slolslH]alalz] o
-
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Numerical Experiments

Empirical robustness of INNs

Accuracy vs perturbation on MNIST handwritten digits

1.0
— A=10""
— A=10"2 i
\—10-25 @ (A =0): improved robustness
0.8 1 =
A =103 than IDL and MON
— 104 )
i: 1875 @ (X > 0): improved robustness at
5007 Y —o sizable perturbations but losing
s DL some percentage accuracy in
< 04 clean performance
0.2
0.0 ; . . .
0.0 0.1 0.2 0.3 0.4 0.5

l~ amplitude of perturbation

Tradeoff between clean performance and robustness J
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Empirical robustness of INNs

Accuracy vs perturbation on MNIST handwritten digits

1.0
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— A=10"2 .
0.8 4 — N—10-25 @ (A =0): improved robustness
’ A=10-3 than IDL and MON
— —4 o
;: 1875 @ (X > 0): improved robustness at
5067 \—o sizable perturbations but losing
s DL some percentage accuracy in
< 041 clean performance
0.2 1
|
| —
0.0 . : T T
0.0 0.1 0.2 0.3 0.4 0.5

{~ amplitude of perturbation
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Conclusions

@ Extension of monotone operator theory to normed-spaces using Logarithmic norm
@ Non-Euclidean contraction theory for well-posedness of INNs

@ Lipschitz bounds of INNs using non-Euclidean monotone operator theory
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Thank you for your attention!
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Contraction Theory

Logarithmic norm and weak pairings

Differential condition J

Logarithmic norm
Given a matrix A € R™*" and a norm || - ||

| I + hA| -1
g(4):= lm ————
i (4) v h
@ Directional derivative of norm || - || in

direction of A,

MZ(A) = l/\maX(A -+ AT)
pi(A) = I (aj; + Z |a”
too(A) = max (aii + Z agj))

'A. Davydov, SJ, F. Bullo, Non-Euclidean contraction theory for robust nonlinear stability, 2022
Non-Euclidean Monotone Operator Theory February 14, 2025 17 / 22

S. Jafarpour (CU Boulder)



Contraction Theory
Logarithmic norm and weak pairings

Differential condition

|
v

Logarithmic norm

Given a matrix A € R™™" and a norm || - ||:

|In + RA| —1

Jg(4) = lim ———

H(4) = g, =
@ Directional derivative of norm || - || in

direction of A,
#2(14) = l/\maX(A -+ AT)
p1(A) = max (aj; + Z |a”
too(A) = max (aii + Z agj))

Integral condition

J

Weak pairing®

Given a norm || - ||, the associated weak
pairing is [+, -] : R" x R" — R:

@ Subadditive and weakly homogeneity

@ Positive definite

@ Cauchy-Schwarz inequality

0 [z,a] = |||
[z,y], =y«
[2,y], = sign(y) "=

[[xv y]]oo = MaX;er (z) TilYi

Too(2) = {i | |2i] = [|]|oo }

LA, Davydov, SJ, F. Bullo, Non-Euclidean contraction theory for robust nonlinear stability, 2022

S. Jafarpour (CU Boulder)
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Contraction theory
Characterization for non-Euclidean norms

(Theorem®

& = f(x,u) is contracting wrt || - | with rate c iff

Differential: p | (De f(w, 1)) < —c, for all z,u

Integral:  [f(z,u) — f(y,u),z —y] < —clle—yl%,  forall z,y,u

v

2 A. Davydov, S. Jafarpour, F. Bullo, TAC 2022
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Contraction theory
Characterization for non-Euclidean norms

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

f is a contracting vector field wrt to || - |2
iff
—f is a strongly monotone operator wrt to the inner product (-, -).
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Contraction theory
Characterization for non-Euclidean norms

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

f is a contracting vector field wrt to || - ||
iff
—f is a strongly monotone operator wrt to the weak pairing [, -].

S. Jafarpour (CU Boulder) Non-Euclidean Monotone Operator Theory February 14, 2025



Implicit neural networks
Origin and motivations

@ Origins:
o Generalizing feedforward neural networks to fully-connected synaptic matrices

Intuition: 21! = ¢;(A;28 +b;) <= ®(Ax + Bu+b), where A has
upper diagonal structure.

Aupper-diagonal = complete -
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Implicit neural networks
Origin and motivations
@ comparable accuracy to traditional neural networks with significant memory reduction
Intuition: implicit neural network = weight-tied infinite-layer network

:
| 1 @y | @3 — @ y
1 1 1 )

2l = ¢ (Az' + By + b;) = lim; .o, 2° = 2* solution to the implicit
neural network

@ suitable for learning constrained optimization problems

Intuition: casting KKT condition as an implicit layer )
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Implicit neural networks
Origin and Motivations

@ vanishing and exploding gradient

Intuition: the notion of “autapse” (time-delayed self-feedback) from neuroscience J

Aupper—diagonal = AAutapse =

@ suitable for learning stiff problems or problems with discontinuity
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Generalized Structure
Comparison with feedforward neural networks

o Feedforward neural networks: @ Implicit neural networks:
2D = (420 1+ 8y), 2O =2 z2=0(Az+ Bz +1b)
u= A,z"* + b, u=Cz+c
2= 3 z + x +b 2= 9 .z+|x+b
u= MWz b y — HEEEEE 2 +c
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