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Outline of this talk

o Reachability Analysis

o Contraction-based Reachability

o Mixed Monotone Reachability
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
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Initial set Initial set

What are the possible states of the system at time 7177 J
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What are the possible states of the system at time 7177 J

@ T-reachable sets characterize evolution of the system

Rf(T, X, W) = {2w(T) | zw(-) is a traj for some w(-) € W with zg € Ap} J
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Reachability Analysis of Systems
Why is it important?

A large number of safety specifications can be represented using T-reachable sets J

S. Jafarpour (CU Boulder) Reachability of Dynamical Systems September 25, 2024 5/23



Reachability Analysis of Systems

Why is it important?

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

State sp‘a"ce Target
Unsafe ‘

T Reachable set T Reachable set

B
e oy

Initial set Initial se T

R¢(T, X, W) N Unsafe set = 0 ) R §(Thnal, Xo, W) C Target set )
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Reachability Analysis of Systems
Why is it important?

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

Unsafe

o

Initial set

T Reachable set

R (T, Xy,W) N Unsafe set

State spéce Target

B
LEN

\ T Reachable set

Initial

iad
set

- 0 J R £ (Thnal, Xo, W) C Target set |

Combining different instantiation of Reach-avoid problem —
diverse range of specifications
(complex planning using logics, invariance, stability)
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets is challenging J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets is challenging J

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets is challenging J

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J

Unsafe

Overapproximation

T Reachable set

Initial set

R¢(T, Xy, W) N Unsafe set = 0

S. Jafarpour (CU Boulder)

State space Target

Overapproximation

=T Reachable set

Reachability of Dynamical Systems

R (Thinal, Xo, W) C Target set
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)
@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)
@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)

Most of these classical and general approaches are computationally heavy. J

In this talk: use control theoretic tools to develop
computationally efficient approaches for reachability J
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Outline of this talk

o Reachability Analysis

o Contraction-based Reachability

o Mixed Monotone Reachability
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Contraction Theory

From stability to reachability

& = f(x,w) is contracting wrt || - || with rate c if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - || J
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Contraction Theory

From stability to reachability

& = f(x,w) is contracting wrt || - || with rate c if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - || J

In this talk: contraction theory for reachability analysiSJ

Given 1 € RY,

Given a matrix A € R™®*" and a norm || - || . .
T g (4) = Damant(diag(m) A+ ATchagm»
i (4) == lim [n + A =1 il LAY = max (aj; +Z | a
h—0+ h
WAl = max aZZ -+ Z s
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Contraction Theory

From stability to reachability

& = f(x,w) is contracting wrt || - || with rate c if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - ||

In this talk: contraction theory for reachability analysiSJ

Matrix measure

Given n € RY,

Given a matrix A € R™*" and a norm || - || . .
-1 piz,n(A) = %AmaX(dlag( JA+ Aleag(n))
,u”H(A) = lim M Mle(A) maX a]] + Z | Qg
h—0+ h
Poon(A) = max aZZ 4 Z s
e directional derivative of matrix norm || - || in direction of A at point I,

@ In the literature: one-sided Lipschitz constant, logarithmic norm
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Contraction-based Reachability
Input-to-state bounds

Assume /.| (df(x w)) < cand H A (z,w H

1SS bound:  [|z(t) — 2*(1)]| < e*||2(0) — 2*(0)] + L lw(®) - w] |
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Contraction-based Reachability
Input-to-state bounds

Assume /.| (df(x w)) < cand H A (z,w H

ISS bound: [[2(t) — z* ()] < e*![l2(0) — #*(0)[| + L Juo(t) - w¥| )

Theorem (classical)

If Xy = BH”(TI,.’IZ*(O)) and W = B||~H(T2,’w*), then | mwmr

Ry(t, Xp) C BH.”(eCtrl + é(ed — 1)rg, x*(1))

where x*(+) is the solution of = f(z,w*) with z(0) = 2*(0).
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Contraction-based Reachability
Input-to-state bounds

Assume /.| (df(x w)) < cand H A (z,w H

1SS bound:  [|z(t) — 2* (1) < e“||(0) — #*(O) + “ [lw(®) — w*| |

Theorem (classical)

If Xy = BH”(TI,.’IZ*(O)) and W = B||~H(T2,’w*), then | mwmr

Ry(t, Xp) C BH.”(eCtrl + %(ed — 1)rg, x*(1))

where x*(+) is the solution of = f(z,w*) with z(0) = 2*(0).

@ proof is based on generalized version of Gronwall’s lemma

@ sharper results using time-varying and locally-defined ¢ and ¢
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Simulation-based Reachability

Contraction tubes

o system’s simulations to improve accuracy of reachability J

@ cover the initial set X and the disturbance set W with || - ||-norm balls!
@ pick a sample point in each covering

'Fan et. al., Simulation-Driven Reachability Using Matrix Measures, 2017
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Simulation-based Reachability
Contraction tubes

@ contraction theory to provide guarantees for reachability J

o compute reach tube By (e“ry + (e — 1)ry, 2*(t))
@ all trajectories starting in the covering remain in the reach tube

'Fan et. al., Simulation-Driven Reachability Using Matrix Measures, 2017
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Simulation-based Reachability
Contraction tubes

o system’s simulations to improve accuracy of reachability J

@ contraction theory to provide guarantees for reachability

over-approximation of the reachable set = union of || - ||-norm balls
By (ery + ge” = 1)ry, 2 (1)) J

'Fan et. al., Simulation-Driven Reachability Using Matrix Measures, 2017
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Outline of this talk

o Reachability Analysis
o Contraction-based Reachability

o Mixed Monotone Reachability
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone?if
24(0) <yp(0) and u<w = x4(t) < yu(t) for all time

where < is the component-wise partial order.

2Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Monotonicity test State Space Ordered
8f . . Trajectories
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone?if

24(0) <yp(0) and u<w = x4(t) < yu(t) for all time

where < is the component-wise partial order.

Monotonicity test State Space Ordered
8f . . Trajectories
Q 5. (v, w) is Metzler (off-diag > 0)

In this talk: monotone system theory for reachability analysis

)

2Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

R (t, [2o, To]) € [2w(t), zw(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)
starting at x (resp. To)
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

Rf(t7 [107E0]) - [xﬂ(t)ﬂ xﬁ(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)

starting at x (resp. To)
Overapproximation with w
Example: 2+ .y
il’l _$§—l‘1+w o1 -
dt |xza| ) = -
—-0.5| (0.5 0 ,
— — with w
e I ol
-1 0 1 2 3 4

X1
September 25, 2024 14 / 23
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Non-monotone Dynamical Systems
Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets
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Non-monotone Dynamical Systems
Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets

E le: I
Xxample 3 Not Overapproximation
d o] _ [#3 -z tw di B
dt |z2] 1
—0.5 0.5
_1 X ! ! ! ! \
-1 0 1 2 3 4 5
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Mixed Monotone Theory

Embedding into a higher dimensional system

e Key idea: embed the dynamical system on R" into a dynamical system on R?"

e Assume W = [w,w] and X)) = [z, To)

Original system

= f(z,w) |

Embedding system

T = (_i(£7 Z,w, w)7

d, d are decomposition functions s.t.

Q f(z,w)=d(z,z,w,w) for every x,w

@ cooperative: (z,w) — d(z, T, w, W)

© competitive: (z,w) — d(z,T,w, W)

=25

O the same properties for d
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Mixed Monotone Theory

Embedding into a higher dimensional system

e Key idea: embed the dynamical system on R" into a dynamical system on R?"
@ Assume W = [w, W] and Xy = [z, To]

Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every x,w

@ cooperative: (z,w) — d(x, T, w,W
Embedding system P (z,w) — d(z )

© competitive: (7,w) — d(z,T,w, W)

i = d(£7x7w7 w)7

T = d(z, T, w, D) Q the same properties for d

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

E] <SE [%] <— o<y and y<7T
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Mixed Monotone Theory

Embedding into a higher dimensional system

e Key idea: embed the dynamical system on R" into a dynamical system on R?"
@ Assume W = [w, W] and Xy = [z, To]

Original system d, d are decomposition functions s.t.

&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every x,w

@ cooperative: (z,w) — d(xz, T, w,w
Embedding system P (z,w) — d(z )

] L © competitive: (Z,w) — d(z,Z,w, W)
X = d(£7 €, w, w)7

T = d(z, T, w, D) Q the same properties for d )

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 19941.

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J
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Mixed Monotone Theory

Embedding into a higher dimensional system

e Key idea: embed the dynamical system on R" into a dynamical system on R?"

e Assume W = [w,w] and X)) = [z, To)

Original system

= f(z,w) |

Embedding system

T = (_i(£7 Z,w, w)7

d, d are decomposition functions s.t.

Q f(z,w)=d(z,z,w,w) for every x,w

@ cooperative: (z,w) — d(z, T, w, W)

© competitive: (z,w) — d(z,T,w, W)

=25

O the same properties for d

In this talk: mixed monotone theory for reachability analysis )
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Embedding System for Linear Dynamical System
A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 —1
@ Example: A=|1 -3 0| = (A" =11 -3 0 [AMZA = {0 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
= Az + Bw .@

Embedding system

Z: [A“leg_i_ LAJMZIE_FB-Q-M_I_B_E
% — [14-‘1\12174‘ \_AJMZIE"F B+E+B_w
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Reachability using Embedding Systems

Hyper-rectangular over-approximations

Assume W = [w,w] and Xy = [z, To] and /r)
z=d(z,7,w,w), z(0) =z E2) .
T =d(7, 2,7, w), z(0) = To 2
Reacha‘ble set
Then R¢(t, Xp) C [z(t), T(t)] Zo
v

3Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Reachability using Embedding Systems

Hyper-rectangular over-approximations

[ Theorem® ] "
Assume W = [w,w] and Xy = [z, To] and ﬂj
z=d(z,7,w,w), z(0) =z E2) .
T =d(7, 2,7, w), z(0) = To 2
Reacha‘ble set
Then R¢(t, Xp) C [z(t), T(t)] Zo
v

(Scalable) a single trajectory of embedding system provides lower bound
(z) and upper bound (T) for the trajectories of the original system. J

3Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Reachability using Embedding Systems
Example

Original System:

d |1 _ ;173—3724—111
x9 T

dt
W=1[22,23] A= Higg] ’ [82”

blue = cooperative, red = competitive

Decomposition function
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Reachability using Embedding Systems
Example

Embedding System:

Original System:

a4 7] _ T3—T9 + W i} (23 — To +w
dt |gg| 1 FRE z, [w} B [2.2
d |z | = |z ol I P
—0.5 0.5 I Ty — Lo +w w 2.3
ST . N I
_ N z,(0)] _ [-0.5 z1(0)] 0.5
blue = cooperative, red = competitive 25(0)| —0.5 z2(0)| — 0.5
Decomposition function
=[]
3 " s
_ T3 4 _ : RI(1, X)
d(z, T, w, W) = [%IL w] + [ 22} ‘
T1 0 .
=[]

S. Jafarpour (CU Boulder)
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Mixed Monotone Theory

Computing of decomposition functions

How to compute a decomposition function for a system?J
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Mixed Monotone Theory

Computing of decomposition functions

How to compute a decomposition function for a system?J

Different approaches for constructing decomposition functions
@ linear systems
@ polynomial systems
@ bounded Jacobian
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Mixed Monotone Theory

Computing of decomposition functions

How to compute a decomposition function for a system?J

Different approaches for constructing decomposition functions
@ linear systems

@ polynomial systems
@ bounded Jacobian

Every locally Lipschitz system has at least one decomposition functionJ

The best (tightest) decomposition function is given by

w,w) = min i(z,u . ,
9 LYy ) e f’L( ) )7 erlzlzlf,,(z,u)
w€ [w, W]

U.l H Titey]

&z, 7w, ) = _max__ fi(zu)
welww]

5

v
S. Jafarpour (CU Boulder) Reachability of Dynamical Systems September 25, 2024 20 /23



Simulation-based Reachability
A mixed monotone approach

cover the initial set Xy and the disturbance set VW with hyper-rectangles J
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Simulation-based Reachability
A mixed monotone approach

For each covering, simulate a single trajectory of the embedding system J
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Simulation-based Reachability
A mixed monotone approach

Union of hyper-rectangles = over-approximation of the reachable set J
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Simulation-based Reachability
A mixed monotone approach

Union of hyper-rectangles = over-approximation of the reachable set J

Question: how accurate is mixed monotone reachability? J
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Simulation-based Reachability
A mixed monotone approach

* * o . < dt * o o
{x*(t)} and {%(t)] traj of embedding system — Hx*(t) %(t)” - edt||x*(0) %(O)”
*(t) z(t) [[27(t) = Z(t) [0 < e™|2"(0) = Z(0)]oo
Question: how accurate is mixed monotone reachability? J
Accuracy = the incremental distance between trajectories of embedding system J
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Simulation-based Reachability
A mixed monotone approach

z" (1) z(t)| . : 2% (t) — z(t)[|oo < e™[|l2*(0) — 2(0)]oo
L } and {E ] traj of embedding system — {|m*(t) 3 () < edt||m*(0) 2 (0)]|e

Question: what is the contraction rate of the embedding system? J

S. Jafarpour (CU Boulder) Reachability of Dynamical Systems September 25, 2024 21 /23



Embedding Systems

Contraction rate wrt £.,-norm

Theorem

Lz 2 [f] = [d(g, Tw E)] := e(z,T,w,w) be the embedding function with the tight

decomposition function for & = f(z,w). For any n € R%,

Hoon (g—i(x,w)) Sc = ool ( ae] (g,f,w,@)) <c

*Jafarpour and Coogan, “Monotoncity and contraction on polyhedral cones”, TAC, 2024
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Embedding Systems

Contraction rate wrt £,

Theorem

& d(z,T,w,w)

i _ [\ - — — . . . .
Lz 2 L] [d(x, Tw, w)] := e(z,T,w,w) be the embedding function with the tight

decomposition function for & = f(z,w). For any n € R%,

Hoo,n (%(mvw)) <c = Hoo,n®Is (81[9960]($’x7w7w)> <c
z

Consequence 1: hyper-rectangles evolve with /., contraction rate of original system

Mixed Monotone hyper-rectangle Contraction tube

*Jafarpour and Coogan, “Monotoncity and contraction on polyhedral cones”, TAC, 2024
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Embedding Systems

Contraction rate wrt £.,-norm

Theorem

d(&? x?w? w)
decomposition function for & = f(z,w). For any n € R%,

Let % [i] = [d(:c, > w,w)] :=e(z,T,w,w) be the embedding function with the tight

Hoo,n (%(mvw)) <c — Hoo @I (81[9960]($’x7w7w)> <c
z

Consequence 2: Mixed Monotone is sharper than contraction wrt to £ )
2 () = 2(t)looy < €[[2(0) = 2(0) oo,y
g (1) = 7)o < €07 (0) = T(O)loon

*Jafarpour and Coogan, “Monotoncity and contraction on polyhedral cones”, TAC, 2024
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Conclusions
and Future Research

Summary

@ we introduced mixed monotone theory, which constructs an embedding system for
reachability analysis

@ we identified the tightest possible embedding system for this approach.

@ we showed that the rate of contraction (with respect to diagonal /,.-norms) of the
tightest embedding system matches that of the original system.

Future Research

@ mixed monotone theory with respect to polyhedral cones (with Sam Coogan)

@ contraction-based and mixed monotone reachability for stochastic dynamical system (with
Yongxin Chen)

SJ and Z. Liu and Y. Chen. Probabilistic Reachability Analysis of Stochastic Control
Systems. arXiv, 2024 (https://arxiv.org/pdf/2407.12225v2) J
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