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An important goal (Safe Autonomy)

Perform their tasks while ensuring safety and robustness of the system.
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Safety-critical Autonomous Systems

Challenges for Safe Autonomy

Challenges for ensuring safety in autonomous systems:
O large number of agents
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Challenges for Safe Autonomy

Challenges for ensuring safety in autonomous systems:

@ complex and highly nonlinear components
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Challenges for Safe Autonomy

Challenges for ensuring safety in autonomous systems:

© uncertain environment with unmodeled dynamics
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Safety-critical Autonomous Systems

Challenges for Safe Autonomy

Challenges for ensuring safety in autonomous systems:
O large number of agents
@ complex and highly nonlinear components

© uncertain environment with unmodeled dynamics

My Research

Different aspect of autonomy with safety and robustness considerations

Tools: Systems and Control (dynamical systems, optimization theory)
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Research summary
My past and current research

Large-scale systems Nonlinear systems
@ threshold of frequency synchronization @ weak and semi-contraction theory (TAC 2021)
(TAC 2020, SICON 2019)

@ non-Euclidean contraction theory (TAC 2022,
@ multi-stability via partitioning the state-space TAC 2023)
(SIAM Review 2021, Nature Com 2022)

@ dynamic stability of low-inertia power grids
(TCNS 2019)

@ small time local controllability (SICON 2020)

‘ Learning-enabled systems

@ contraction-based reachability of neural networks
(NeurlPS 2021, L4DC 2022)

@ interval-based reachability of neural networks
@ non-Euclidean monotone operator theory (L4DC 2023, ADHS 2024)
(CDC 2022)

Optimization-based systems
@ time-varying optimization (TAC 2021)

) @ safety verification of neural feedback loops
(submitted 2023)

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 5 /47



Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous Systems with Learning-enabled components )
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Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous Systems with Learning-enabled components )

Machine learning was one of the deriving forces for developments J

@ availability of data and computation tools

@ performance and efficiency
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Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous Systems with Learning-enabled components )

Machine learning was one of the deriving forces for developments J

@ availability of data and computation tools

@ performance and efficiency

Success stories and potential applications J

NVIDIA self driving car Amazon fulfillment centers Manufacturing
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Slams Right Into Overtumed Truck While on
Autopilot
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Video courtesy of Dr. Taylor Johnson at CS department of the Vanderbilt University
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Stams Right Into Overtumed Truck While on
Autopilot

What is different with Learning-based components?J
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Slams Right Into Overtumed Truck While on
Autopilot

@ limited guarantee in their design )

mage credit: MIT CSAIL
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )
Waymo driverless car strikes bicyclist in
San Francisco, causes minor injuries

Robot accident at Amazon
warehouse renews safety debate

Tesla Stams Right Into Overtumed Truck While on

Autopilot
MIT

o limited guarantee in their design J

ARTIFICIAL INTELLIGENCE

The way we train Al is fundamentally flawed
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Slams Right Into Overtumed Truck While on
Autopilot

@ limited guarantee in their design § §
| . . . U—5—g=Y

@ large # of parameters with nonlinearity ol |o

O (@)

I i)

478 x 100 x 100 x 10

# of parameters ~ 90000
# of activation patterns ~ 100
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? )

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Slams Right Into Overtumed Truck While on

Autopilot
@ limited guarantee in their design
@ large # of parameters with nonlinearity J

Rigorous and computationally efficient methods for safety assurance )

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 7/ 47



Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms J

T N(z)
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Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms

T N(z)

Different approaches:
@ analysis (Goodfellow et al., 2015, Zhang et al., 2019, Fazlyab et al., 2023)

@ design (Papernot et al., 2016, Carlini and Wagner, 2017, Madry et al., 2018)
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Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms J

T N(z)

Different approaches:
@ analysis (Goodfellow et al., 2015, Zhang et al., 2019, Fazlyab et al., 2023)

@ design (Papernot et al., 2016, Carlini and Wagner, 2017, Madry et al., 2018)

In autonomous systems, learning algorithms are a part of the system
(controller, motion planner, obstacle detection)
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Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms J

T N(z)

Different approaches:
@ analysis (Goodfellow et al., 2015, Zhang et al., 2019, Fazlyab et al., 2023)

@ design (Papernot et al., 2016, Carlini and Wagner, 2017, Madry et al., 2018)

In autonomous systems, learning algorithms are a part of the system
(controller, motion planner, obstacle detection)

New challenges arises when learning algorithms are used in-the-loop
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Example: Safety in Mobile Robots

In-the-loop vs. stand-alone

Perception-based Obstacle Avoidance

System

Disturbance '

Learning-based obstacle detection

trained offline using images

x

Actuator

In-the-loop Stand-alone
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Example: Safety in Mobile Robots

In-the-loop vs. stand-alone

Perception-based Obstacle Avoidance

Disturbance '

System

Learning-based obstacle detection

Actuator

x

trained offline using images

K

In-the-loop Stand-alone

@ stand-alone:

@ in-the-loop:

estimation of states using learning algorithm

closed-loop system avoid the obstacle
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Example: Safety in Mobile Robots

In-the-loop vs. stand-alone

Perception-based Obstacle Avoidance

System

Actuator

)
D‘ turbancy i p €T
— |
E‘
Samera

Learning-based obstacle detection

Learning-based obstacle detection

trained offline using images

ii)

In-the-loop Stand-alone
o stand-alone: estimation of states using learning algorithm
@ in-the-loop: closed-loop system avoid the obstacle

In-the-loop: how the autonomous system perform with
the learning algorithm as a part of it. J
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Learning-enabled Autonomous Systems
Safety from a reachability perspective

Ensure safety of the autonomous system with learning algorithms in-the-loop )
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Learning-enabled Autonomous Systems
Safety from a reachability perspective

Ensure safety of the autonomous system with learning algorithms in-the-loop )

Safety of autonomous system using reachability analysis J

Reachability analysis estimates the
evolution of the autonomous system J
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Learning-enabled Autonomous Systems
Safety from a reachability perspective

Ensure safety of the autonomous system with learning algorithms in-the-loop J

Safety of autonomous system using reachability analysis )

Reachability analysis estimates the
evolution of the autonomous system J

In this talk:
@ control-theoretic tools for efficient and scalable reachability

@ applications to safety assurance of learning-enabled systems
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Outline of this talk

o Reachability Analysis

o Neural Network Controlled Systems

e Future Research Directions
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w)

State space

Initial set

)C1(T)
o /T)
1

XQ(T)

State: z ¢ R" Uncertainty : w € W C R™

State space

T Reachable set

3
oS

Foyl.

{ i)
Initial set

What are the possible states of the system at time 7177 J
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x1(T)
/

x (T RN

)31‘2. 1(T) e T Reachable set
o—
o LNt
Initial set Initial set

What are the possible states of the system at time 7177 J

@ T-reachable sets characterize evolution of the system

Rf(T, X, W) = {2w(T) | () is a traj for some w(-) € W with zg € Ap} J
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Reachability Analysis of Systems
Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J
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Reachability Analysis of Systems

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

State sp‘a"ce Target
Unsafe ‘

T Reachable set T Reachable set

B £ AR
Initial set Initial set

R¢(T, X, W) N Unsafe set = 0 ) R §(Thinal, Xo, W) C Target set )
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Reachability Analysis of Systems
Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

Unsafe

T Reachable set

EAEAN LY
Initial set

R¢(T, Xo,W) N Unsafe set = () J

State spéce Target

T Reachable set

“:\:‘ r
Initial set

R (Thnal, Xo, W) C Target set |

Combining different instantiation of Reach-avoid problem —
diverse range of specifications
(complex planning using logics, invariance, stability)
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations of reachable sets J

Over-approximation: R ¢ (T, Xo, W) C R¢(T, Xo, W)
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations of reachable sets J

Over-approximation: R ¢ (T, Xo, W) C R¢(T, Xo, W)

Unsafe

R (T, X, W) N Unsafe set = ()

State space Target

Overapproximation

Reachable set

Initial set

ﬁf(Tﬁnah Xo, W) C Target set
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Reachability Analysis of Systems

Applications

Autonomous Driving: Power grids:

Althoff, 2014 Chen and Dominguez-Garcia, 2016

Robot-assisted Surgery: Drug Delivery:
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980 J
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980 J

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)

@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980 J

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)

@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)

Most of the classical reachability approaches are computationally heavy and
not scalable to large-size systems J

In this talk: use control-theoretic tools to develop scalable and
computationally efficient approaches for reachability J
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Approach #1: Contraction Theory
A framework for stability analysis

& = f(x,w) is contracting wrt || - | with rate ¢ if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - || J
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Approach #1: Contraction Theory
A framework for stability analysis

& = f(x,w) is contracting wrt || - | with rate ¢ if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - || }

Applications

@ convergence to reference trajectories

efficient equilibrium point computation ! ot

zg / unit disk with radius e”

@ input-output robustness

@ entrainment to periodic orbits
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Approach #1: Contraction Theory
A framework for stability analysis

& = f(x,w) is contracting wrt || - | with rate ¢ if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - ||

Applications

convergence to reference trajectories

efficient equilibrium point computation

input-output robustness

entrainment to periodic orbits

T unit disk with radius e~

ct

In this talk: contraction theory for reachability analysiSJ
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Approach #1: Contraction Theory and Matrix Measures

Characterization

How to characterize contractivity using vector fields? J
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Approach #1: Contraction Theory and Matrix Measures

Characterization

How to characterize contractivity using vector fields? J

Matrix measure

Given a matrix A € R™"™ and a norm || - ||:
. |+ hA| -1
JA4) = lim ————
i (4) h—0+ h
v
@ Directional derivative of norm || - || in direction of A,

@ In the literature: one-sided Lipschitz constant, logarithmic norm
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Approach #1: Contraction Theory and Matrix Measures

Characterization

How to characterize contractivity using vector fields? J

Matrix measure Closed-form expressions:

Given a matrix A € R™"™ and a norm || - ||: pa(A) = Dama(A + AT
I, +hA| -1
'UHH(A) :— lim % ,Ul(A) max aj] + Z ‘au
h—0+t h
foo(A) = max am 4 Z |a”
J v
@ Directional derivative of norm || - || in direction of A,

@ In the literature: one-sided Lipschitz constant, logarithmic norm
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Approach #1: Contraction Theory and Matrix Measures

Characterization

How to characterize contractivity using vector fields? J

Matrix measure Closed-form expressions:

Given a matrix A € R™"™ and a norm || - ||: pa(A) = Dama(A + AT
I, +hA| -1
'UHH(A) :— lim % ,Ul(A) max aj] +Z ‘au
h—0+t h
foo(A) = max am 4 Z |a”
v
@ Directional derivative of norm || - || in direction of A,

@ In the literature: one-sided Lipschitz constant, logarithmic norm

Classical result

& = f(x,w) is contracting wrt || - || with rate c iff

M||.||(%(x,w)) <ec, for all z,w

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024



Approach #1: Contraction Theory and Matrix Measures

Characterization

How to characterize contractivity using vector fields? J

Matrix measure

Closed-form expressions:

Given a matrix A € R™"™ and a norm || - ||: pa(A) = Dama(A + AT
I, +hA| -1
MH”(A) -— lim w ,Ul(A) max aj] + Z ‘azg
h—0+t h
foo(A) = max am 4 Z |a”
v
@ Directional derivative of norm || - || in direction of A,

@ In the literature: one-sided Lipschitz constant, logarithmic norm

Classical result

& = f(x,w) is contracting wrt || - || with rate c iff

0
(5L (=,

w)) <cg,

for all x, w

o Efficient methods to find minimum ¢ (Aylward et al., 2006, Giesl et al. 2023)
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Approach #1: Contraction-based Reachability

Input-to-state stability

Assume /.| (%(Jcﬂu)) < cand H%(m,w}“ < ¢ for almost every x, u.

'A. Davydov and SJ and F.Bullo, IEEE TAC, 2022.
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Approach #1: Contraction-based Reachability

Input-to-state stability

-

Assume /.| (g{ (ZL'JU)) < cand H%(m,w}“ < ¢ for almost every x, u.

Input-to-state stability
lz(t) —2*(®)]] < e”l|2(0) — &*(0)]| + £(e” — 1) sup,epoq llw(T) — w*||

'A. Davydov and SJ and F.Bullo, IEEE TAC, 2022.
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Approach #1: Contraction-based Reachability

Input-to-state stability

Assume /.| (%(@u))) < cand H%@’M)H < ¢ for almost every x, u.

If XO — BHH(Tl?xS) and W = B”,H(TQ,'LU*)y then

Ry(t, Xo, W) C Byj(ery + (e — 1)rg, a*(1))

where z*(-) is the solution of & = f(z,w*) with z(0) = .

'A. Davydov and SJ and F.Bullo, IEEE TAC, 2022.
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Approach #1: Contraction-based Reachability

Input-to-state stability

Assume /.| (%(L,LU)) < cand H%@’M)H < ¢ for almost every x, u.

If XO - BH”(TI,JJS) and W = B”'H(T2’w*)' then | V0
'\

Ry(t, Xo, W) C By(e®r1 + £(e” — 1)rg, a*(t))

where z*(-) is the solution of & = f(z,w*) with z(0) = .

(Computationally efficient): only need estimates of ¢ and ¢
(Scalable): efficient methods for computing ¢ and ¢ for large-scale systems J

'A. Davydov and SJ and F.Bullo, IEEE TAC, 2022.
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Approach #2: Mixed Monotone Theory

Stability using Monotonicity

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"

o Assume W = [w,w| and Xy = [z, To

Original system

= f(z,w) |

Embedding system

A
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Approach #2: Mixed Monotone Theory

Stability using Monotonicity

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"
e Assume W = [w,w] and Xy = [z, To]

Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every x, w

@ cooperative: (z,w) — d,(x,T,w,w
Embedding system P (z, w) = dy(z )

© competitive: (z,w) +— d;(z, T, w, W)

T = d(z, T, w, D) © the same properties for d

.
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Approach #2: Mixed Monotone Theory

Stability using Monotonicity

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"

o Assume W = [w,w| and Xy = [z, To

Original system

= f(z,w) |

Embedding system

.

d, d are decomposition functions s.t.
Q f(z,w)=d(z,z,w,w) for every x, w
© cooperative: (z,w) — d;(z, T, w, W)
© competitive: (z,w) +— d;(z, T, w, W)

O the same properties for d

Embedding system is monotone (order preserving):

z;t = T;) andz;t forall]j
z;d = T;T andgz;| forall]j
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Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every x, w

@ cooperative: (z,w) — d,(x,T,w,w
Embedding system P (z, w) = dy(z )

© competitive: (z,w) +— d;(z, T, w, W)

T = d(z, T, w, D) © the same properties for d

.

Every system has at least one decomposition function J
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Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every x, w

@ cooperative: (z,w) — d,(z, T, w,w
Embedding system P (z, w) = dy(z )

© competitive: (z,w) +— d;(z, T, w, W)

T = d(z, T, w, D) © the same properties for d

Every system has at least one decomposition function

In this talk: we use mixed monotone theory for reachability analysis

J
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Approach #2: Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and
T = d(£7 T, w, w)v g(O) = Zy
T — E(Ea z,w, 2)7 f(0) = To \\\\
Rcachalblc set
Then Ry (t, Xp) C [z(t), Z(t)]
)

2H. Smith, Journal of Difference Equations and Applications, 2008

Safety in Learning-enabled Autonomous Systems March 5, 2024 21 / 47

S. Jafarpour (CU Boulder)



Approach #2: Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and
i = d(ga Ta wa w)a ﬁ(O) = EO
f = E(fa z, W, w)7 f(0) =T \\\\
Rcachalblc set
Then Ry(t, &) C [z(t), Z(?)]
V.

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

2H. Smith, Journal of Difference Equations and Applications, 2008
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Approach #2: Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and
T = d(ﬁ, z,w, W), g(O) = 2y
i = 8(57 Z, W, w)’ j(0) = X \\\\
Rcachalblc set
Then T2 (t, &) C [z(t), 7(2)]
4

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

(Computational efficient): solve for one trajectory of embedding system J

(Scalable): embedding system is 2n-dimensional

2H. Smith, Journal of Difference Equations and Applications, 2008
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Approach #2: Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

3SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 22 / 47



Approach #2: Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

@ Assume f: R — R is scalar:

Mean-value Inequality

s+ | min ) @0 < 0 < 10 + | max ﬁr@—@

z€[z,7) OX zelz,z] O
e d(z)

where [A]T = max{A4,0} and [A]” = min{4,0}.

3SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
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Approach #2: Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

Jacobian-based: i = f(z,u) such that 2 € [Jpz) 23] and % € [Juap Jjum]s then
e ) = [ %H R FXM i+ e

z+— Ry — Ry ...~ R, — 7, then the i-th column of M is min,cp; wefum %(z,w)

SIS

8l 8l

@ Interval analysis for computing Jacobian bounds. h A T
@ immrax: Toolbox that implements interval analysis
: T\ R Rs
in JAX. =2 1
Rs

n

3SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 22 / 47



Approach #2: Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

Jacobian-based: i = f(z,u) such that 2 € [Jpz) 23] and % € [Juap Jjum]s then
ez - o %H 2+ - WH o e

z+— Ry — Ry ...~ R, — 7, then the i-th column of M is min,cp; wefum %(z,w)

8l H\
=

IS

. . . Interval Analysks and Mixed Monotone
@ Interval analysis for computing Jacobian bounds. S S

Comares

@ immrax: Toolbox that implements interval analysis
in JAX.

3SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
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Outline of this talk

o Reachability Analysis

o Neural Network Controlled Systems

e Future Research Directions

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 23 / 47



Learning-based Controllers in Autonomous Systems

Introduction

o In this part: Learning-based component as a controller
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Learning-based Controllers in Autonomous Systems

Introduction

@ In this part: Learning-based component as a controller —

[ N
f

System

iy

Learning-based Feedback
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Learning-based Controllers in Autonomous Systems

Introduction

o In this part: Learning-based component as a controller

Issues with traditional controllers:
© computationally burdensome
@ interaction with human

© complicated representation

Self driving vehicles: J Robotic motion planning:J

M. Bojarski, et al., NeurlPS, 2016. M. Everett, et. al., IROS, 2018.

disturbance |—> ,°Q

System

X

Learning-based Feedback

Collision avoidance:

ACAS ¥u Command

A fmition 0

K. Julian, et. al., DASC, 2016.

March 5, 2024

24 / 47

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems



Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

Safety &
assurance Optlmal COl’ltI'O]. ,ob
Robust MPC S—
System
Neural Network
controllers %
: Learning-based Feedback

Computational efficiency

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

Safety &
assurance Optlmal Control ,ob
Robust MPC —
System

Neural Network
controllers %

» Learning-based Feedback

Computational efficiency

Design a mechanism that can do run-time safety verification J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

Safety &
assurance Optlmal Control ,ob
Robust MPC —
System

Neural Network
controllers %

> Learning-based Feedback

Computational efficiency

Design a mechanism that can do run-time safety verification J

Our approach: reachable set over-approximations for some time in future. J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

:t = f(x7u7w)7
u= N(z),

safety of the closed-loop system

¢ = f(z,N(z),w) = f(z,w)
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

'i: = f(x7u7w)7
u= N(z),

¢ £ the closed.| u = N(z) is pre-trained feed-forward neural
safety of the closed-loop system P Ty

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

j" = f(x7 u7 w)?
u=N(),
u = N(x) is pre-trained feed-forward neural
safety of the closed-loop system

network with k-layer:

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),

directly performing reachability on f€¢ is computationally challenging
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

j" = f(x7 u7 w)?
u=N(),
u = N(x) is pre-trained feed-forward neural
safety of the closed-loop system

network with k-layer:

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),

Rigorousness of control tools + effectiveness of ML tools

Combine our reachability frameworks with neural network verification
methods
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

°H. Zhang et al., NeurIPS 2018.
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

Many neural network verification algorithms can produce these bounds.
ex. CROWN (H. Zhang et al., 2018), LipSDP (M. Fazlyab et al., 2019), IBP (S. Gowal et al., 2018).

°H. Zhang et al., NeurIPS 2018.
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

Many neural network verification algorithms can produce these bounds.
ex. CROWN (H. Zhang et al., 2018), LipSDP (M. Fazlyab et al., 2019), IBP (S. Gowal et al., 2018).

aTe® 4 p < n§k+1)(§(k)) <aTe¢® 43

@ Bounding the value of each neurons

@ Linear upper and lower bounds on the
activation function

°H. Zhang et al., NeurIPS 2018.
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Safety of Neural Network Controlled Systems
A Compositional Approach

Reachability of open-loop system treating u as a _ Sﬁtem )
parameter J €%
disturbance w e W
b . - [
Neural network verification algorithm for bounds on u ) %

| ——

Reachability of open-loop system + Neural network

. e . System
verification bounds J % w=Ne) R i)
X0 € Xo

disturbance w € W J
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Safety of Neural Network Controlled Systems
A Compositional Approach

. — — — System
z =d(z,T,u, U, w, W) S f )
= 3 — — — x0 € Xp
r= d(£7 $’ Q, U/, w’ w) disturbance w € W
()
Uz < N(z) <Upg forevery z € [2,7]. | %
R —

. - - _ U=N) System
& =d(z, T, Uy z), Upz) W, W) ol ey
: — —_— disturbance w e W J
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Safety of Neural Network Controlled Systems
A Compositional Approach

. — — — System
z = d(£7 Z,u,u,w, w) i =f(x,u,w)
= 3 — — — x0 € Xp
T = d(z,7,u,T,w, D)
disturbance w e W
0
Uz < N(z) < Uz forevery z € [z,7]. J %
R —
. —_ — J— System
b = d(2, 01y ), o) 0,) == Ik
T = d(.%' T U,[m x]au[x 7] 'w,m) disturbance we W ——1

Composition approach over-approximation:
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Safety of Neural Network Controlled Systems
A Compositional Approach

. — — — System
z = d(£7 Z,u,u,w, w) i =f(x,u,w)
= 3 — — — x0 € Xp
T = d(z,7,u,T,w, D)
disturbance w e W
0
Uz < N(z) < Uz forevery z € [z,7]. J %
R —
. —_ — J— System
b = d(2, 01y ), o) 0,) == Ik
T = d(.%' T U,[m x]au[x 7] 'w,m) disturbance we W ——1

Composition approach over-approximation:
Rye(t, Xo, W) C [2(t), 7(2) |

It lead to overly-conservative estimates of reachable set J
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example
T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Compositional approach Interaction-aware approach

First find the bounds u < Kz < @, then First replace u = Kx in the system, then

(1-K)z+w
(1-K)T+w

8- 1R

This system is unstable.

This system is stable.

S. Jafarpour (CU Boulder)
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Compositional approach Interaction-aware approach

First find the bounds u < Kz < @, then First replace u = Kx in the system, then

t=(01-Kz+uw
z=(1-K)T+w

This system is unstable.

This system is stable.

We need to know the functional dependencies of neural network bounds J

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 29 / 47



Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (x)

Nipz(2) < N(z) < N[LE] (x), forall z € [z,T]

®H. Zhang et al., NeurIPS 2018.
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Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (z) J

Nipz(2) < N(z) < N[LE] (x), forall z € [z,T]

e Example: CROWN©®can provide functional bounds.

CROWN functional bounds: CROWN input-output bounds:
Nip7)(%) = Apa® + ba) Uppz) = Al T + Az + bya),
Niga)(2) = At + bz o) = AT + ApmZ + ez

®H. Zhang et al., NeurIPS 2018.
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Safety of Neural Network Controlled Systems
Interaction-aware Approach

Theorem’

Original system Embedding system

_[g-c: f(a, ]_ —[- [ g Bl

H and H capture the effect of interactions between nonlinear system and neural network.

Interaction-aware over-approximation:
R e (t, Xo, W) C [z(t), Z(¢)] J

7SJ and A. Harapanahalli and S. Coogan, under review, 2023
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Case Study: Vehicle Platooning
Numerical Experiments

]
Dynamics of the jth vehicle o
Pl = vl, 0) = tanh(ul) + w?, A=
p; = vi, i)é = tanh(ui) + wi, A=
where wi, w) ~ U([—0.001,0.001]). ) Ao
Unsafe
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Case Study: Vehicle Platooning
Numerical Experiments

Dynamics of the jth vehicle

P =1, 0}, = tanh(u}) + w},
Py, = v, vy = tanh(u}) + wy,
where w

7wl ~ U([—0.001,0.001]). First vehicle

uses a neural network controller
4 x 100 x 100 x 2, with ReLU activations

and is trained using trajectory data from an MPC
controller for the first vehicle.

S. Jafarpour (CU Boulder)
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Case Study: Vehicle Platooning
Numerical Experiments

Dynamics of the jth vehicle

P =1, 0}, = tanh(u}) + w},
Py, = vy, vy = tanh(u}) + wy,
where w}

7wl ~ U([—0.001,0.001]). Other vehicles

use PD controller

j—1
J_ -1 5 . Y
e (pz’ h ’“Hw-w)

+ kv(véfl - vj),

where d € {z,y}.

S. Jafarpour (CU Boulder)
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Case Study: Vehicle Platooning
Numerical Experiments

10

Dynamics of the jth vehicle

pl=vl, o= tanh(u)+ui, 4 /
N 2 — tanh(ul) + w)
Py, = v, vy = tanh(u)) + wy, .

where wi, w) ~ U([—0.001,0.001]).

@ compositional approach

@ a platoon of 9 vehicles

=

@ reachable overapproximations for ¢ € [0, 1.5]

.
O N B OO OO N B O 0 OO N b O

0 2 4 6 8100 2 4 6 8100 2 4 6 8 10
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Case Study: Vehicle Platooning

Numerical Experiments

=
o

Dynamics of the jth vehicle

pa]c = U%, ’Ugc = tanh(u]) + wia / /
Py, = v, vy = tanh(u]) + wi, .

where wi, w) ~ U([—0.001,0.001]).

@ interaction-aware approach

@ a platoon of 9 vehicles

=

@ reachable over-approximations for ¢ € [0, 1.5]

[ N (units) [ # of states | Our Approach (s) | POLAR (s) [ JuliaReach (s) |

.
O N B OO OO N B O 0 OO N b O

4 16 1.369 14.182 12.579

9 36 3.144 43.428 59.929

20 80 0.737 316.337 - 024681002 4 6 8100 2 4 6 810
50 200 46.426 4256.435 - POLAR = C. Huang et al., ATVA 2022

Table: Run-time comparison

S. Jafarpour (CU Boulder)
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JuliaReach = C. Schilling et al., AAAI 2022
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Conclusions

Key takeaways

reachability as a framework for safety certification of autonomous systems

developed computationally efficient and scalable approaches for reachability:
contraction-based and Interval-based

@ run-time verification of neural network controlled systems

@ capture stabilizing effect of learning-based components
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Outline of this talk

o Reachability Analysis
o Neural Network Controlled Systems

e Future Research Directions
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Future Research

Reachability Analysis

Data-assisted reachability of mechanical systems J

8SJ and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, submitted 2023

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 35 / 47



Future Research
Reachability Analysis

Data-assisted reachability of mechanical systems J
Safety in manufacturing robotics Safe control of transportation systems
@ complex tasks and operations @ nonlinear dynamics
@ interactions with human @ learning-enabled components
@ availability of data @ large mobility data

8SJ and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, submitted 2023
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Data-assisted reachability of mechanical systems J
Safety in manufacturing robotics Safe control of transportation systems
@ complex tasks and operations @ nonlinear dynamics
@ interactions with human @ learning-enabled components
@ availability of data @ large mobility data

@ finite abstractions from reachability (formal methods)

8SJ and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, submitted 2023
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Future Research
Reachability Analysis

Data-assisted reachability of mechanical systems J
Safety in manufacturing robotics Safe control of transportation systems
@ complex tasks and operations @ nonlinear dynamics
@ interactions with human @ learning-enabled components
@ availability of data @ large mobility data

@ finite abstractions from reachability (formal methods)

@ physics-informed metrics for run-time monitoring®

8SJ and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, submitted 2023
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Future Research
Reachability Analysis

Data-assisted reachability of mechanical systems J
Safety in manufacturing robotics Safe control of transportation systems
@ complex tasks and operations @ nonlinear dynamics
@ interactions with human @ learning-enabled components
@ availability of data @ large mobility data

@ finite abstractions from reachability (formal methods)
@ physics-informed metrics for run-time monitoring®

© data to obtain suitable metrics for reachability analysis

funding: NSERC Alliance (possible partner: Electrans or LoopX Al) J

8SJ and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, submitted 2023
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Future Research

Learning-based Autonomous Systems

Safe learning and control in learning-enabled feedback loops )

9SJ and Y. Chen, “Probabilistic Reachability of Stochastic Systems”, submitted 2024
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Future Research
Learning-based Autonomous Systems

Safe learning and control in learning-enabled feedback loops J
Uncertainty learning and calibration Safe control of feedback loop
@ learn uncertainties in run-time @ switch to back up controllers
o effect of feedback on uncertainty o differentiable safety metrics
@ design a correction control @ correct-by-design training

9SJ and Y. Chen, “Probabilistic Reachability of Stochastic Systems”, submitted 2024
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Future Research
Learning-based Autonomous Systems

Safe learning and control in learning-enabled feedback loops J
Uncertainty learning and calibration Safe control of feedback loop
@ learn uncertainties in run-time @ switch to back up controllers
o effect of feedback on uncertainty o differentiable safety metrics
@ design a correction control @ correct-by-design training
gr &

Thread 1

Saféty Verification ; Learning

@ utilize the statistical knowledge of
uncertainty?

@ reachability analysis to obtain 7
differentiable safety metrics =

Thread 3

funding: NSERC discovery J

°SJ and Y. Chen, “Probabilistic Reachability of Stochastic Systems”, submitted 2024
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Future Research

Monitoring and Control in Large-scale Modern Power Grids

Detection and control in modern power grids )
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Future Research

Monitoring and Control in Large-scale Modern Power Grids

Detection and control in modern power grids )

Far future grids = 100% penetration of
renewables

Near future grids = hybrid with both
renewables and synchronous machines
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Future Research

Monitoring and Control in Large-scale Modern Power Grids

Detection and control in modern power grids )

. Fe a -

Far future grids = 100% penetration of " ";"_‘.'" ) N

renewables “we YA + @ & b on Db

l - o “"”ﬁ? ==
Near future grids = hybrid with both S acin So e
ren | n nchron machin Sl B e

enewables and synchronous machines L b .

Unique features of renewables ; . )
Goal: transient stability of the grid )

o fast dynamics

@ stochastic generation/consumption

@ fast and computationally efficient safety monitoring

funding: NSERC Alliance (possible partner: Canadian Solar Inc.)J
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Contraction-based Reachability
Searching for norm and contraction rate
For || - ||2,p with a positive definite matrix P:

po.p(Df(t,x)) < ¢ <= PDf(t,x) + Df(t,x)" P < 2cP |

For || - Hl,diag(n) with n € RY:

:U’l,diag(n)(Df(tvx)) <c = WT[Df(tvgc)]M < CUT
Moo,diag(n)(Df(tvx)) <c = [Df(t, x)]Mn <cn

where [A]M is Metzler part of matrix A.

If fis polynomial in ¢ and z,
© for a fix ¢, search for P (or 1) can be done using SOS programming
@ iterative bisection on ¢ and SOS programming to find the minimum ¢

E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine. Stability and robustness analysis of
nonlinear systems via contraction metrics and SOS programming. Automatica, 2008 J
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Contraction-based Reachability

Proof of input-to-state stability

Assume .| (%(m,w)) <cand H%(m,w}” < ¢ for almost all z,u

If XO = BH”(TI,mS) and W = B”'H(T2’w*)' then | V0

Rf(t, Xo) - BH,”(eCtTl + %(ed = 1)T2,$*(t))

where z*(-) is the solution of & = f(z,w*) with z(0) = .

Proof: let z(-) be a traj of © = f(z,w). Using Taylor expansion, for h > 0
A(z,w)

Ve

1
x(t+h)—z*(t+h)=x()—z"(t)+h </0 D f(re+ (1 — T)x*)dT) (z(t) — z*(t))

B(z,w)

A

+h (/01 Dy f(z, 7w+ (1 — T)w*)d7'> (w — w*) + O(h?)

v

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems
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Contraction-based Reachability
Proof continued

D*||e(t) — ()] = limsup 1EEE) =27+ Z)” — () - 2* )]
h—0t

[ (In + hA(z, w)) (2(t) — 2*(t)) + hB(z, w)(w — w)|| — [lx(t) — z*(t)]]

= lim sup
h—0+ h

i o L+ P 0) () = a* ()] + BB w) o = w”l| = a(t) — " (1)
h—0+ h

< (Al w)a(t) - * (0| + | Bl )|l — w*|

< cf|z(t) — 2" (O + Hlw — o’

@ generalized version of Gronwall's lemma
@ overly conservative since ¢ and ¢ are defined globally
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Embedding System for Linear Dynamical System

A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 —1
@ Example: A=|1 -3 0| = (A" =11 -3 0 [AMZA = {0 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
= Az + Bw ..@

Embedding system

Z: [A“leg_i_ LAJMZIE_FB—&—M_I_B—E
z=[AM7Z + |AMz + B*w+ B w
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Interval-based Reachability
Proof of Jacobian-based Theorem

For a scalar vector field f : R — R, we show that d(z,7) = f(x) + [minze@ﬂ g—ﬂ - (T—=x)is

© cooperative in x

@ competitive in T

9 3 ) . Of1]™ of . Of
9 _ 9 B ar| _9r, | >o.
(Ed@’ 7) xf@) Lgﬁr;] 896] ox' " * Lgﬁ% 8:1:] =Y J
Similarly,
B . Of]
— ) = - <
afd@’ ) Lrer[lalcg:] 335] =0 J
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

P = vcos(é + B(uz))
py = vsin(¢ + B(uz))

B(uz) = arctan ( d

I+ tan(u2)>

= %sin(ﬂ(uz))

1')=u1

r

Pz

(8.8)

(=8,-8)

March 5, 2024
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

P = vcos(é + B(uz))
py = vsin(¢ + B(uz))

B(uz) = arctan ( d

I+ tan(u2)>

= %Sin(ﬂ(uﬂ)

1')=u1

r

(~8,8)

(8.8)

Goal: steer the bicycle to the origin avoiding the obstacles

)
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Case Study: Bicycle Model
A naive compositional approach

(=8,8) (8,8)

Dynamics of bicycle

e =veos(é+ Blug)) = %Sm(ﬂ(uz))

Py =vsin(¢+ B(uz))  v=u

B(uz) = arctan (lf :7; . tan(u2)>

(~8,-8) (8,-8)

Goal: steer the bicycle to the origin avoiding the obstacles J

@ train a feedforward neural network 4 — 100 — 100 — 2 using data from model predictive
control
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0,0)

o Ay = [Qo,fo] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Embedding system:

u < N(z) <, for every z € [z,T].
March 5, 2024 46 / 47
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

@ start from (8,8) toward (0,0)
o Ay = [QO,T()] with

2y = (7.95 7.95 —T—001 1.99)"
To= (805 805 —Z+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Euler integration with step h:

Dy 44 //' Dy 44 J
Zy :£O+hd(£07507ﬂ07ﬂ07w7w) ] 51
T1 = To + hd(g()’TOvﬂOaﬂOaw’ w) o] 0
_ _ 0 2 4 6 8 0 2 4 6 8
uy < N(z) <y, for every x € [z, To). Pa Pz
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
V.
8 N 84 a
P
Euler integration with step h: °1 @7 |
- 1
Dya / Dy d
— — — /
Zo = z7 + hd(z1,T1, Uy, U1, w, W) ’
24 2
Ty = T1 + hd(z1, 71, Uy, U1, W, V)
0 04
_ _ 0 2 4 6 8 0 2 4 6 8
u; < N(x) <y, for every x € [z,,71]. Pa Da
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
V.
8 < 8 a
\
. . ) Y
Euler integration with step h: ° ! ° ;
Pys =) Py 7
— — — — ’
L3 = Lo A hC_i(£2, T2, Uy, U2, W, w) , ’} ,
T3 :TQ +hd(£27527ﬂ27ﬂ2aw7w) o o
o _ 6 i !l 6 8 6 2 4 6 8
uy < N(x) < Uy, for every x € [z4,Ta). Pa Pa

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024 46 / 47



Case Study: Bicycle Model

Numerical Experiments

e start from (8,7) toward (0,0)

o Xy = [z, To] with
zy=(7.95 6.95 —2—0.01 1.99)"
To= (805 7.05 —2T4+0.01 2.01)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

.
8| runtime: 0.028+0.003 | 81 runtime: 0.047 £ 0.002
6 61
p>'4 41
2 24
01 2 . ] 04
0.0 25 5.0 7.5 0.0 2.5 5.0 7.5
Px Px
Naive interconnection approach interaction approach

S. Jafarpour (CU Boulder) Safety in Learning-enabled Autonomous Systems March 5, 2024



	fd@rm@1: 
	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 
	pbs@ARFix@71: 
	pbs@ARFix@72: 
	pbs@ARFix@73: 
	pbs@ARFix@74: 
	pbs@ARFix@75: 
	pbs@ARFix@76: 
	pbs@ARFix@77: 
	pbs@ARFix@78: 
	pbs@ARFix@79: 
	pbs@ARFix@80: 
	pbs@ARFix@81: 
	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 
	pbs@ARFix@89: 
	pbs@ARFix@90: 
	pbs@ARFix@91: 
	pbs@ARFix@92: 
	pbs@ARFix@93: 
	pbs@ARFix@94: 
	pbs@ARFix@95: 
	pbs@ARFix@96: 
	pbs@ARFix@97: 
	pbs@ARFix@98: 
	pbs@ARFix@99: 
	pbs@ARFix@100: 
	pbs@ARFix@101: 
	pbs@ARFix@102: 
	pbs@ARFix@103: 
	pbs@ARFix@104: 
	pbs@ARFix@105: 
	pbs@ARFix@106: 
	pbs@ARFix@107: 
	pbs@ARFix@108: 
	pbs@ARFix@109: 
	pbs@ARFix@110: 
	pbs@ARFix@111: 
	pbs@ARFix@112: 
	pbs@ARFix@113: 
	pbs@ARFix@114: 
	pbs@ARFix@115: 
	pbs@ARFix@116: 
	pbs@ARFix@117: 
	pbs@ARFix@118: 
	pbs@ARFix@119: 
	pbs@ARFix@120: 
	pbs@ARFix@121: 
	pbs@ARFix@122: 
	pbs@ARFix@123: 
	pbs@ARFix@124: 
	pbs@ARFix@125: 
	pbs@ARFix@126: 
	pbs@ARFix@127: 
	pbs@ARFix@128: 


