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Safety-critical Autonomous Systems

Introduction

Energy/power systems Air mobility Autonomous driving
> = o

Manufacturing Transportation systems Agriculture

An important goal (Safe Autonomy)

Perform their tasks while ensuring safety and robustness of the system.
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Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous systems with learning-enabled components J

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 3/41



Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous systems with learning-enabled components J

Machine learning is a driving forces for developments in autonomous systems J

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 3/41



Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous systems with learning-enabled components J

Machine learning is a driving forces for developments in autonomous systems J

@ availability of data and computation tools

@ performance and efficiency

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 3/41



Learning-enabled Autonomous Systems

Motivations and Success Stories

In this talk: Autonomous systems with learning-enabled components J

Machine learning is a driving forces for developments in autonomous systems J

@ availability of data and computation tools

@ performance and efficiency

Success stories and potential applications J

NVIDIA self driving car Amazon fulfillment centers Manufacturing

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 3/41



Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? J

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Siams Right Into Overturned Truck While on
Autopilot
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But can we ensure their safety? J

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Siams Right Into Overturned Truck While on
Autopilot

Plant 1 Plant 2 Plant n
What is different with Learning-based components? J
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+0.005 x

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 4 /41

mage credit: MIT CSAIL



Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? J
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o limited guarantee in their design

ARTIFICIAL INTELLIGENCE

The way we train Al is fundamentally flawed
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? J

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Siams Right Into Overturned Truck While on

Autopilot

0o 0 o 0 O O

o limited guarantee in their design o| [o
O O

. . . U5 lo Y

@ large # of parameters with nonlinearity 5| |o
ol |o

T i)

478 x 100 x 100 x 10

# of parameters ~ 90000
# of activation patterns ~ 10%°
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Learning-enabled Autonomous Systems

Safety Assurance as a Challenge

But can we ensure their safety? J

Robot accident at Amazon Waymo driverless car strikes bicyclist in
warehouse renews safety debate San Francisco, causes minor injuries

Tesla Siams Right Into Overturned Truck While on

Autopilot
o limited guarantee in their design
@ large # of parameters with nonlinearity J

Rigorous and computationally efficient methods for safety assurance J
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Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms J

T N(z)
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Different approaches:

@ analysis (Goodfellow et al., 2015, Zhang et al., 2019, Fazlyab et al., 2023)
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Different approaches:
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Learning-enabled Autonomous Systems

Safety in Machine Learning

ML focus on safety and robustness of stand-alone learning algorithms J

T N(z)

Different approaches:
@ analysis (Goodfellow et al., 2015, Zhang et al., 2019, Fazlyab et al., 2023)

@ design (Papernot et al., 2016, Carlini and Wagner, 2017, Madry et al., 2018)

In autonomous systems, learning algorithms are a part of the system
(controller, motion planner, obstacle detection)

New challenges arises when learning algorithms are used in-the-loop
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Example: Safety in Mobile Robots

In-the-loop vs. stand-alone

Perception-based Obstacle Avoidance

System

Disturbance '

Learning-based obstacle detection

trained offline using images

x

Actuator

In-the-loop Stand-alone
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Disturbance '

Learning-based obstacle detection

trained offline using images

Actuator

x

In-the-loop Stand-alone

o stand-alone: estimation of states using learning algorithm

@ in-the-loop: closed-loop system avoid the obstacle
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Example: Safety in Mobile Robots

In-the-loop vs. stand-alone

Perception-based Obstacle Avoidance

System
Disturbance

b
—p |
B — y
Actuator X

g~
8)

Learning-based obstacle detection

trained offline using images

Learning-based obstacle detection

In-the-loop Stand-alone

o stand-alone: estimation of states using learning algorithm

@ in-the-loop: closed-loop system avoid the obstacle

In-the-loop: how the autonomous system perform with
the learning algorithm as a part of it. J
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Learning-enabled Autonomous Systems
Safety from a reachability perspective

Ensure safety of the autonomous system with learning algorithms in-the-loop )
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evolution of the autonomous system J
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Learning-enabled Autonomous Systems
Safety from a reachability perspective

Ensure safety of the autonomous system with learning algorithms in-the-loop J

Safety of autonomous system using reachability analysis )

initial sec trajectory

Reachability analysis estimates the
evolution of the autonomous system J

In this talk:
@ control-theoretic tools for efficient and scalable reachability

@ applications to safety assurance of learning-enabled systems
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Outline of this talk

o Reachability Analysis

o Monotone System Theory

o Neural Network Controlled Systems
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/

x (T e v

)31‘2. 1(T) e T Reachable set
o—
s LUVt
Initial set Initial set

What are the possible states of the system at time 7177 J
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Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/

x (T e v

)31‘2. 1(T) e T Reachable set
o—
s LUVt
Initial set Initial set

What are the possible states of the system at time 7177 J

@ T-reachable sets characterize evolution of the system

Rf(T, X, W) = {2w(T) | () is a traj for some w(-) € W with zg € Ap} J
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Reachability Analysis of Systems
Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J
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Reachability Analysis of Systems

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

State sp‘a"ce Target
Unsafe ‘

T Reachable set T Reachable set

B
e oy

Initial set Initial se T

R¢(T, X, W) N Unsafe set = 0 ) R §(Thinal, Xo, W) C Target set )
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Reachability Analysis of Systems
Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

Unsafe

o}

Initial set

T Reachable set

R (T, Xy,W) N Unsafe set

State spéce Target

B
LEN

\ T Reachable set

Initial

iad
set

0 ) R (Thnal, Xo, W) C Target set J

Combining different instantiation of Reach-avoid problem —
diverse range of specifications
(complex planning using logics, invariance, stability)

S. Jafarpour (CU Boulder)
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations of reachable sets J

Over-approximation: R ¢ (T, Xo, W) C R¢(T, Xo, W)
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations of reachable sets J

Over-approximation: R ¢ (T, Xo, W) C R¢(T, Xo, W)

Unsafe

R (T, X, W) N Unsafe set = ()

S. Jafarpour (CU Boulder)

7z

Overapproximation

State space Target

Reachable set

Initial set

ﬁf(Tﬁnah Xo, W) C Target set
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Reachability Analysis of Systems

Applications

Autonomous Driving: Power grids:

Gourdes
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Chen, Dutta, and Sankaranarayanan, 2017
S. Jafarpour (CU Boulder)

Mixed-monotone Theory September 11, 2024 12 /41



Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980 J
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Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)

@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980 J

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)

@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,
2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)

Most of the classical reachability approaches are computationally heavy and
not scalable to large-size systems J

In this talk: use control-theoretic tools to develop scalable and
computationally efficient approaches for reachability J

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 13 /41



Outline of this talk

o Reachability Analysis

o Monotone System Theory

o Neural Network Controlled Systems
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system & = f(z,w) is monotone if
2u(0) <yw(0) and u<w = x,(t) < yu(t) forall time

where < is the component-wise partial order.

!Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Definition and Characterization

A dynamical system & = f(z,w) is monotone if
2u(0) <yw(0) and u<w = x,(t) < yu(t) forall time

where < is the component-wise partial order.

State Space

Ordered
Trajectories

Theorem®: Monotonicity test

Q3 of ~(z,w) is Metzler (off-diag > 0)

Q@ (z,w)>0

! Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system & = f(z,w) is monotone if
2u(0) <yw(0) and u<w = x,(t) < yu(t) forall time

where < is the component-wise partial order.

State Space

Theorem®: Monotonicity test Ordered

Trajectories

Q3 of ~(z,w) is Metzler (off-diag > 0)

Q@ (z,w)>0

In this talk: monotone system theory for reachability analysis )

! Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Monotone vs. Non-monotone Systems
Examples

Monotone System )

d |zp| _ -z +w
dt |xza| x1

Non-monotone System )
d zy| _ 3 —z0+w
dt |x2] 1
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system & = f(z,w) with w € W = [w, W]
Ri(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)
starting at x (resp. To)
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical result)
For a monotone system & = f(z,w) with w € W = [w, W]

Ri(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)

starting at x (resp. To)
Overapproximation with w
Example: 2+ .y
il’l _$§—l‘1+w o1 -
dt |xza| ) = o
—-0.5| (0.5 0 ,
— — with w
o I I
-1 0 1 2 3 4

X1
September 11, 2024 17 /41
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Non-monotone Dynamical Systems
Reachability analysis

A large number of the dynamical systems are not monotone J
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Non-monotone Dynamical Systems
Reachability analysis

A large number of the dynamical systems are not monotone J

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets

Example: 3 [ Not Overapproximation
d [z1]  [23 -2 +w 20 =
dt |x2 N x1 a
0.5 0.5 = +
X | | ! L J
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Non-monotone Dynamical Systems
Reachability analysis

A large number of the dynamical systems are not monotone J

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets

Example: 3 [ Not Overapproximation
d [z1]  [23 -2 +w 20 =
dt |x2 N x1 a
0.5 0.5 = +
X | | ! L J

X1

How to over-approximate the reachable sets of non-monotone systems? J
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Mixed Monotone Theory

Embedding into a higher dimensional system

o Key idea: embed the dynamical system on R into a dynamical system on R2"
e Assume W = [w,w| and Xy = [z, To]

Original system d, d are decomposition functions s.t.

&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every z, w

© cooperative: (z,w) — d(z, T, w,w
Embedding system P (z, w) = d(z )

i . © competitive: (Z,w) — d(z,7,w, W)
£=d(£,$awaw)’ _
) @ the same properties for d

==
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Mixed Monotone Theory

Embedding into a higher dimensional system

o Key idea: embed the dynamical system on R into a dynamical system on R2"
e Assume W = [w,w| and Xy = [z, To]

Original system d, d are decomposition functions s.t.

&= f(z,w) ) Q f(z,w)=d(z,z,w,w) for every z, w

© cooperative: (z,w) — d(z, T, w,w
Embedding system P (: w) — d(z )

© competitive: (z,w) — d(z,T,w, W)

= d(£7 T, w, w)’ — =
- = the same properties for d
T = d(&, T, W, w) s ey o
V.
f locally Lipschitz = a decomposition function exists J
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Mixed Monotone Theory

Southeast partial order on R"

Southeast partial order <gg:

E] <SE [z] <— <y and y<7T
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Mixed Monotone Theory

Southeast partial order on R"

Southeast partial order <gg:

E] <SE [z] <— <y and y<7T

Theorem (Classical Result)

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

Blewly]. Yool — [Faol) o font

V.
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Mixed Monotone Theory

Southeast partial order on R"

Southeast partial order <gg:

[E;\] <sE [%] < <y and y<7

Theorem (Classical Result)

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

Blewly]. Yool — [Faol) o font

V.

Key idea: use monotonicity of the embedding system to study
the original dynamical system J
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Mixed Monotone Theory

Literature Review

A short (and incomplete) Literature review:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J

S. Coogan and M. Arcak. Stability of traffic flow networks with a polytree topology.
Automatica, 2016 J
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Mixed Monotone Theory
Literature Review

A short (and incomplete) Literature review:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J

S. Coogan and M. Arcak. Stability of traffic flow networks with a polytree topology.
Automatica, 2016 J

In this talk: use embedding system to study reachability of the
original system J
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Mixed Monootne Embedding Systems
Example

Original System:

d |T1| ;1:53—:L'2+u,,'
dt | g9 xq

W=1[22, 2.3

blue = cooperative, red = competitive

Decomposition function
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Mixed Monootne Embedding Systems
Example

Original System: Embedding System:
4 |T1] _ .'sz_ﬁ—:L'g +w Zq gg — T+ w
dt |po| 1 FRE ) w| (2.2
W =22, 2.3 d T | T -zt w| |w] |23
T2 T

blue = cooperative, red = competitive

Decomposition function
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Linear Dynamical System

A structure preserving decomposition function

o Metzler/non-Metzler decomposition: A = [A]M7 4- [A]n—M

2 0 -1 2 0 0 0 0 -1
o Example: A=|1 -3 0| = [A™ =1 -3 0 [AP-MA =10 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
= Az + Bw ..@

Embedding system

QI [A}MZIQ‘F [A}H_MZIE-FB—FM-F B w
= A"z + (A" Mz + B*w+ B w

8l
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Decomposition Functions
A Jacobian-based approach

How to compute a decomposition function for a system?J

@ Assume f : R — R is scalar-valued:

Mean-value Inequality

@)+ [minepa 3| @ —2) < f(0) < f@) + [max.cpm 3] @ - 2)

Then

[minze[g,f] %Tr [minze[z,f] %}7 [w}
[maxZe[Lf] %ﬂ_ [maxze[zaf] %r s

where [A]T = max{A4,0} and [A]” = min{4,0}.
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Decomposition Functions

A Jacobian-based approach

How to compute a decomposition function for a system?J

2

Theorem

Jacobian-based: & = f(x,w) with differentiable f, then

ieman) = o ] (5 G

X

2+ ey

...+ R, — T, then the i-th column of A is min,cp, vejwm| %(z, u)

@ Interval analysis for computing Jacobian bounds. T

o immrax: Toolbox that implements interval analysis
in JAX. T \UJt R

Ry

2SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
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Decomposition Functions

A Jacobian-based approach

How to compute a decomposition function for a system?)

Jacobian-based: & = f(x,w) with differentiable f, then
ettt o A e e R R

z— Ry — Ry ...~ R, — T, then the i-th column of A is min.¢p, uefwm %(z, u)

Interval Analysis and Mixed Monotone

@ Interval analysis for computing Jacobian bounds. Bt

o immrax: Toolbox that implements interval analysis
in JAX.

2SJ and A. Harapanahalli and S. Coogan, L4DC, 2023
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Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R(t, Xo, W) C [a(t), 7(

), z(0) =z
)7 f(0) =Ty

I8

7&7

I

&
.l Ig.
5l
8 8
gl
g =l

8-
Il

I 9 I

i
Reachable set

3H. Smith, Journal of Difference Equations and Applications, 2008
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Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R (t, Xo, W) C [x(t), 7(

)s z(0) = zg
) Z(0) = T

b

7&7

l&-
I
s

I

8l
Il
I
5l
8 8
gl
g =l

I 9 I

i
Reachable set

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

3H. Smith, Journal of Difference Equations and Applications, 2008
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Interval-based Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R(t, Xo, W) C [a(t), 7(

), z(0) = zg
)? j(0) = X

1]

7@7

I

IR
I
I
8

8 &
gl

SRS

I 9 I

i
Reachable set

~
=
=,

.

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

(Computational efficient): solve for one trajectory of embedding system J

(Scalable): embedding system is 2n-dimensional

3H. Smith, Journal of Difference Equations and Applications, 2008
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Reachability using Embedding Systems
Example

Original System:

d |1 ;173—3724—111
9 T

dt
W=1[22,23] A= Higg] ’ [82”

blue = cooperative, red = competitive

Decomposition function
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Reachability using Embedding Systems
Example

Embedding System:

Original System:

d |1 ;1‘3—3?24—(1)
dt | g 21

W=1[22,23 A=

blue = cooperative,

Decomposition function

03] [o3]

red = competitive

L1
d (L2
dt T
X2

3 —To+w
Ly

Ty -z W
T

0.5

Bl

] i)

$21

S. Jafarpour (CU Boulder)

M

R (1, Xp)

~F]

ixed-monotone Theory

September 11, 2024

|
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Outline of this talk

o Reachability Analysis
o Monotone System Theory

o Neural Network Controlled Systems
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Learning-based Controllers in Autonomous Systems

Introduction

o In this part: Learning-based component as a controller

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 29 /41



Learning-based Controllers in Autonomous Systems

Introduction

@ In this part: Learning-based component as a controller — ,.b
-
System

S

Learning-based Feedback

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 29 /41



Learning-based Controllers in Autonomous Systems

Introduction

@ In this part: Learning-based component as a controller — ,.b
. .. —_—
Issues with traditional controllers: —
© computationally burdensome
@ interaction with human %
© complicated representation Learning-based Fecdback
Self driving vehicles: J Robotic motion planning:J Collision avoidance: [
ACAS Xu Command

Recorded

stearing
wheel ergle | pcfistfor shit Desired staering commeand
™| and mtaton
Netwark
Lot camara computed
] : —dmng 1.
Random st cammand
Cantor. ' (=" )] | -
“’“".‘ o i || >
Right camera | [
Back propagation |, ET0
waight adusiment '
M. Bojarski, et al., NeurlPS, 2016. M. Everett, et. al., IROS, 2018. K. Julian, et. al., DASC, 2016.
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

>

Safety 4

assurance Optlmal Control lob
L]

Robust MPC

System

Neural Network

controllers %

=
>

Computational efficiency

Learning-based Feedback

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

>

Safety 4

assurance Optlmal Control lob
L]

Robust MPC

System

Neural Network
controllers %

» Learning-based Feedback

Computational efficiency

Design a mechanism that can do run-time safety verification J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Analysis of Learning-based Controllers

Safety Verification

Safety of learning-enabled autonomous systems cannot be completely
ensured at the design level* J

>

Safety 4

assurance Optlmal Control lob
L]

Robust MPC

System

Neural Network
controllers %

» Learning-based Feedback

Computational efficiency

Design a mechanism that can do run-time safety verification J

Our approach: reachable set over-approximations for some time in future. J

*Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

:t = f(x7u7w)7
u= N(z),

safety of the closed-loop system

¢ = f(z,N(z),w) = f(z,w)
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Safety of Neural Network Controlled Systems
Problem Statement

An open-loop nonlinear system with a
neural network controller

disturbance w e W —T

'i: = f(x7u7w)7
u= N(z),

¢ £ the closed.| u = N(z) is pre-trained feed-forward neural
safety of the closed-loop system P Ty

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),
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Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

j" = f(x7 u7 w)?
u=N(),
u = N(x) is pre-trained feed-forward neural
safety of the closed-loop system

network with k-layer:

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),

directly performing reachability on f€¢ is computationally challenging

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 31/41



Safety of Neural Network Controlled Systems
Problem Statement

System
x=f(x,u,w)
xp € Xp

disturbance w e W —T

An open-loop nonlinear system with a
neural network controller

j" = f(x7 u7 w)?
u=N(),
u = N(x) is pre-trained feed-forward neural
safety of the closed-loop system

network with k-layer:

¢ = f(z,N(z),w) = f(z,w)

A

€0 (z) = pO WDl (z) 4 p(-1)
t=£60, u=w®e® () +p® .= N(x),

Rigorousness of control tools + effectiveness of ML tools

Combine our reachability frameworks with neural network verification
methods
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

°H. Zhang et al., NeurIPS 2018.
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

Many neural network verification algorithms can produce these bounds.
ex. CROWN (H. Zhang et al., 2018), LipSDP (M. Fazlyab et al., 2019), IBP (S. Gowal et al., 2018).

°H. Zhang et al., NeurIPS 2018.
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Neural Network Verification Algorithms
Interval Input-output Bounds

Input-output bounds: Given a neural network controller u = N(x)

Uz < N(z) <z, forallze€|z,7]

Many neural network verification algorithms can produce these bounds.
ex. CROWN (H. Zhang et al., 2018), LipSDP (M. Fazlyab et al., 2019), IBP (S. Gowal et al., 2018).

aTe® 4 p < n§k+1)(§(k)) <aTe¢® 43

@ Bounding the value of each neurons

@ Linear upper and lower bounds on the
activation function

°H. Zhang et al., NeurIPS 2018.
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Safety of Neural Network Controlled Systems
A Compositional Approach

Reachability of open-loop system treating u as a _ Sﬁtem )
parameter J €%
disturbance w e W
b . - [
Neural network verification algorithm for bounds on u ) %

| ——

Reachability of open-loop system + Neural network

. e . System
verification bounds J % w=Ne) B i)
X0 € Xo

disturbance w € W J
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Safety of Neural Network Controlled Systems
A Compositional Approach

r = T U 1 System
= d(£7 z,u,u,w, w) i =f(x,u,w)
= 3 — — — x0 € Xp
T =d(z,T,u,T,w,)
disturbance w e W
——————
Uz < N(2) < Tz for every z € [z,7]. | %
-
. d — — — u=Nx) System
& =dz,7, Ulg 7]> Uz,z] W, w) % =1
L = _ . : -
T = d(£7 z, E[g;,f]; U/[x z)» w, 'Z,U) disturbance w € W ——
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Safety of Neural Network Controlled Systems
A Compositional Approach

. — — — System
z = d(£7 Z,u,u,w, w) i =f(x,u,w)
= 3 — — — x0 € Xp
T = d(z,7,u,T,w, D)
disturbance w e W
0
Uz < N(z) < Uz forevery z € [z,7]. J %
R —
. —_ — J— System
b = d(2, 01y ), o) 0,) == Ik
T = d(.%' T U,[m x]au[x 7] 'w,m) disturbance we W ——1

Composition approach over-approximation:
Rye(t, Xo, W) C [2(t), 7(2) |
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Safety of Neural Network Controlled Systems
A Compositional Approach

. — — — System
z = d(£7 Z,u,u,w, w) i =f(x,u,w)
= 3 — — — x0 € Xp
T = d(z,7,u,T,w, D)
disturbance w e W
0
Uz < N(z) < Uz forevery z € [z,7]. J %
R —
. —_ — J— System
b = d(2, 01y ), o) 0,) == Ik
T = d(.%' T U,[m x]au[x 7] 'w,m) disturbance we W ——1

Composition approach over-approximation:
Rye(t, Xo, W) C [2(t), 7(2) |

It lead to overly-conservative estimates of reachable set J
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Case Study: Bicycle Model
A naive compositional approach

(=8,8) (8,8)

Dynamics of bicycle

e =veos(é+ Blug)) = %sin(ﬂ(w))

Py =vsin(¢+ B(uz))  v=u

B(uz) = arctan (lf :7; . tan(u2)>

(~8,-8) (8,-8)

Pz

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 34 /41



Case Study: Bicycle Model
A naive compositional approach

(=8,8) (8,8)

Dynamics of bicycle

e =veos(é+ Blug)) = %Sm(ﬂ(uz))

Py =vsin(¢+ B(uz))  v=u

B(uz) = arctan (lf :7; . tan(u2)>

(~8,-8) (8,-8)

Goal: steer the bicycle to the origin avoiding the obstacles J
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Case Study: Bicycle Model
A naive compositional approach

(=8,8) (8,8)

Dynamics of bicycle

e =veos(é+ Blug)) = %Sm(ﬂ(uz))

Py =vsin(¢+ B(uz))  v=u

B(uz) = arctan (lf :7; . tan(u2)>

(~8,-8) (8,-8)

Goal: steer the bicycle to the origin avoiding the obstacles J

@ train a feedforward neural network 4 — 100 — 100 — 2 using data from model predictive
control
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Reachability of Closed-loop System
Case Study: Bicycle Model

e start from (8, 8) toward (0,0)

o Ay = [Qo,fo] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

V.

Embedding system:

D
|
IS
=
(S
&

8- 8-
Il

al a

)

=l

IS

ol

(S

&

u < N(z) <, for every z € [z,T].
September 11, 2024 35 /41

S. Jafarpour (CU Boulder) Mixed-monotone Theory



Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

@ start from (8,8) toward (0,0)
o Ay = [QO,T()] with

2y = (7.95 7.95 —T—001 1.99)"
To= (805 805 —Z+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Euler integration with step h:

Dy 44 //' Dy 44 J
Zy :£O+hd(£07507ﬂ07ﬂ07w7w) ] 51
T1 = To + hd(g()’TOvﬂOaﬂOaw’ w) o] 0
_ _ 0 2 4 6 8 0 2 4 6 8
uy < N(z) <y, for every x € [z, To). Pa Pz

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 35 /41



Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
V.
8 \\ 84 a
Euler integration with step h: °1 ET«H °1 ]
- 1
Dya / Dy d
— — — /
Zo = z7 + hd(z1,T1, Uy, U1, w, W) ’
24 2
Ty = T1 + hd(z1, 71, Uy, U1, W, V)
0 0
_ _ 0 2 4 6 8 0 2 4 6 8
u; < N(x) <y, for every x € [z,,71]. Pa Da
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
£
8 < 8 a
\
. . : \
Euler integration with step h: ° ! ° ;
Dy = Dys .
[— — PR— 7/ 7
L3 = Lo A hC_i(£2, T2, Uy, U2, W, w) , 'éff""}’ s
T3 :TQ +hd(£27527ﬂ27ﬂ2aw7w) o o
o _ 0 2 4‘! 6 é 0 2 4 6 8
uy < N(x) < Uy, for every x € [z4,Ta). Pa Pa
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example
T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Compositional approach Interaction-aware approach

First find the bounds u < Kz < @, then First replace u = Kx in the system, then

t=(01-Kz+uw
z=(1-K)T+w

This system is unstable.

This system is stable.
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Stabilizing Effect of Neural Network Controllers

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Compositional approach

First find the bounds u < Kz <, then

This system is unstable.

Interaction-aware approach

First replace u = Kx in the system, then

t=(01-Kz+uw
z=(1-K)T+w

This system is stable.

We need to know the functional dependencies of neural network bounds J

S. Jafarpour (CU Boulder)

Mixed-monotone Theory
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Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (x)

Nipz(2) < N(z) < N[LE] (x), forall z € [z,T]

®H. Zhang et al., NeurIPS 2018.
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Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (z) J

Nipz(2) < N(z) < N[LE] (x), forall z € [z,T]

e Example: CROWN©®can provide functional bounds.

CROWN functional bounds: CROWN input-output bounds:
Nip7)(%) = Apa® + ba) Uppz) = Al T + Az + bya),
Niga)(2) = At + bz o) = AT + ApmZ + ez

®H. Zhang et al., NeurIPS 2018.
S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 37 /41



Safety of Neural Network Controlled Systems
Interaction-aware Approach

Theorem’

Original system Embedding system

_[g-c: f(a, ]_ —[- [ g Bl

H and H capture the effect of interactions between nonlinear system and neural network.

Interaction-aware over-approximation:
R e (t, Xo, W) C [z(t), Z(¢)] J

7SJ and A. Harapanahalli and S. Coogan, under review, 2023
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Bicycle Model Revisited

Numerical Experiments

e start from (8,7) toward (0,0)
o Xy = [z, To| with

o = start

zy=(7.95 6.95 —2—0.01 1.99)"
To= (805 7.05 —2T4+0.01 2.01)"

o = destination

(8,-8)

@ CROWN for verification of neural network

V.

©

runtime: 0.028 # 0,003 871 runtime: 0.047 +0.002

6 ; ] 61
Py ' 7 A 4]
2 . ' ; 5]
01 : ; : 01

00 25 50 75 00 25 50 75
P Px

Composition approach Interaction-aware approach
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Case Study: Vehicle Platooning
Numerical Experiments

||
Dynamics of the jth vehicle o
pl=, 0) = tanh(ul) + w?, A=
p; = vi, i)é = tanh(ui) + wi, ]
where wi, w) ~ U([—0.001,0.001]). ) ]
Unsafe
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Case Study: Vehicle Platooning
Numerical Experiments

Dynamics of the jth vehicle

P =1, 0}, = tanh(u}) + w},
Py, = v, vy = tanh(u}) + wy,
where w

7wl ~ U([—0.001,0.001]). First vehicle

uses a neural network controller
4 x 100 x 100 x 2, with ReLU activations

and is trained using trajectory data from an MPC
controller for the first vehicle.

S. Jafarpour (CU Boulder)
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Case Study: Vehicle Platooning
Numerical Experiments

Dynamics of the jth vehicle

=,

where wi, w) ~ U([—0.001,0.001]). Other vehicles

—1
Vg
Mol

use PD controller

J _
udkp<d - d

- ‘
+ kv(vé - vfi),

where d € {z,y}.

¥, = tanh(u

]}; = vi, vé = tanh(u’

)—i—wj
y)+w$’

S. Jafarpour (CU Boulder)
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Case Study: Vehicle Platooning
Numerical Experiments

10

Dynamics of the jth vehicle

pl=vl, o= tanh(u)+ui, 4 /
N 2 — tanh(ul) + w)
Py, = v, vy = tanh(u)) + wy, .

where wi, w) ~ U([—0.001,0.001]).

@ compositional approach

@ a platoon of 9 vehicles

=

@ reachable overapproximations for ¢ € [0, 1.5]

.
O N B OO OO N B O 0 OO N b O

0 2 4 6 8100 2 4 6 8100 2 4 6 8 10

S. Jafarpour (CU Boulder) Mixed-monotone Theory September 11, 2024 40 / 41



Case Study: Vehicle Platooning
Numerical Experiments

10

Dynamics of the jth vehicle

pa]c = U%, ’Ugc = tanh(u]) + wia / /
] J — h(w’ J
Py, = v, vy = tanh(u)) + wy, .

where wi, w) ~ U([—0.001,0.001]).

@ interaction-aware approach

@ a platoon of 9 vehicles

=

@ reachable over-approximations for ¢ € [0, 1.5]

[ N (units) [ # of states | Our Approach (s) | POLAR (s) [ JuliaReach (s) |

/

.
O N B OO OO N B O 0 OO N b O

4 16 1.369 14.182 12.579

9 36 3.144 43.428 59.929

20 80 0.737 316.337 - 024681002 4 6 8100 2 4 6 810
50 200 46.426 4256.435 - POLAR = C. Huang et al., ATVA 2022

Table: Run-time comparison

S. Jafarpour (CU Boulder)

JuliaReach = C. Schilling et al., AAAI 2022

Mixed-monotone Theory September 11, 2024
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Conclusions
Key takeaways

reachability as a framework for safety certification of autonomous systems

developed computationally efficient and scalable approaches for reachability using
monotone system theory

@ run-time verification of neural network controlled systems

@ capture stabilizing effect of learning-based components
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