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Modern Autonomous Systems

Introduction

Power grids Delivery drones Autonomous Vehicles

@ large penetration of distributed renewable units in power grids
@ urban air mobility support operations including transfer of passengers and cargo

@ the increase in number of self-driving learning-enabled vehicles
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Modern Autonomous Systems

Introduction

Power grids Delivery drones Autonomous Vehicles

@ large penetration of distributed renewable units in power grids
@ urban air mobility support operations including transfer of passengers and cargo

@ the increase in number of self-driving learning-enabled vehicles

Autonomous systems in our societies are becoming large-scale,
interconnected and complex.
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Modern Autonomous Systems
Safety and Reliability guarantees

A critical task

Desired performance while ensuring their safety and reliability.

N

2011 US Southwest blackout Postal Drone hit the building Self-driving car accident
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Modern Autonomous Systems
Safety and Reliability guarantees

A critical task

Desired performance while ensuring their safety and reliability.

2011 US Southwest blackout

My Research

Provide guarantees for safety and reliability of autonomous systems

Tools: Systems and Control (contraction theory, monotone system theory)
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Learning-enabled Autonomous Systems

Motivations and Applications

In this talk: Autonomous Systems with learning-based components J
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Learning-enabled Autonomous Systems

Motivations and Applications

In this talk: Autonomous Systems with learning-based components J

@ Learning-based controllers or motion planners in safety-critical applications

@ Main issues with traditional controllers: computationally burdensome, executed by an
expert, complicated representation.

Self driving vehicles: ) Robotic motion planning:) Collision avoidance: [
ACAS Xu Command
Recorded
slearing oo
wheel engle | pfust o shit Desired stasring command
| and rotaton -
Ketenrk ;
Lot camara computed
JF : —dmng Y.
Canlor camera | »mﬂ - o Bzl
meé- i
Backpopegtion |, ETr | R e ]
waigH austmact ' X Pasttion ()
M. Bojarski, et al., NeurlPS, 2016. M. Everett, et. al., IROS, 2018. K. Julian, et. al., DASC, 2016.
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Learning-enabled Autonomous Systems

Analysis and Design

disturbance I—.

[ N
g

System

Goal: ensure safety and reliability of the
closed-loop system J

B

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Learning-enabled Autonomous Systems

Analysis and Design

disturbance I—. ,.
Goal: ensure safety and reliability of the J [ !b

System

closed-loop system

Issues with learning algorithms: oo o s
@ large # of parameters with nonlinearity
@ sensitive wrt to input perturbations! @ RTAYA y=3
@ no safety guarantee in their training -

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Learning-enabled Autonomous Systems

Analysis and Design

disturbance I—. ,.
Goal: ensure safety and reliability of the J [ !b

System

closed-loop system

Issues with learning algorithms: oo o s
@ large # of parameters with nonlinearity
@ sensitive wrt to input perturbations! @ RTAYA y=3
@ no safety guarantee in their training -
Analysis: how safe is the closed-loop system? (Verification)
Design: how to design the learning component to ensure safety? (Training) J

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Example: Safety in Mobile Robots
Learning-enabled controllers
Perception-based Obstacle Avoidance

4

=
&)

System

i=fuw)| y

y = h(z)
Camera Images ‘f = f(x, u, w)

Learning-based obstacle detection

Disturbance

Learning-based obstacle detection

trained offline using images

Actuator

Goal
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Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

4

Disturbance System

i=fuw)| y

y = h(z) —J

Learning-based obstacle detection

Actuator

Canmera Images i = f(z,u,w) trained offline using images

% v y = h(z)

Learning-based obstacle detection

2)

No guarantee to avoid the obstacle:
@ out of distribution images

@ changes in the environment
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Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

4

=
&)

System

Disturbance

i=fuw)| y

y = h(z) ___j
F |

Learning-based obstacle detection

Learning-based obstacle detection

trained offline using images

Camera Images T

(x,u,w)

Actuator

I
> =

<
Il

2)

Goal
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Outline of this talk

o Reachability Analysis

o Contraction and Monotone Theory

o Analysis of Learning-enabled Feedbacks
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/
T -
)3162' (T LS T Reachable set
-— St gy
F i i
Initial set Initial set

What are the possible states of the system at time 7177 J
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/

x (T e v

)31‘2. 1(T) e T Reachable set
o—
s LUVt
Initial set Initial set

What are the possible states of the system at time 7177 J

@ T-reachable sets characterize evolution of the system

Rf(T, X, W) = {2w(T) | () is a traj for some w(-) € W with zg € Ap} J
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Reachability Analysis of Systems
Safety verification via reachable sets

A large number of safety specifications can be represented using T-reachable sets J
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Reachability Analysis of Systems

Safety verification via reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

State sp‘a"ce Target
Unsafe ‘

T Reachable set T Reachable set

Initial set Initial set o B
R¢(T, Xo,W) N Unsafe set = () ) R §(Thinal, Xo, W) C Target set )
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Reachability Analysis of Systems
Safety verification via reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

Unsafe

T Reachable set

EAEAN Y
Initial set

R¢(T, Xo,W) N Unsafe set = () J

State spéce Target

T Reachable set

“:\:‘ r
Initial set

R (Thnal, Xo, W) C Target set |

Combining different instantiation of Reach-avoid problem —
diverse range of specifications
(complex planning using logics, invariance, stability)
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Reachability Analysis of Systems

Applications

Autonomous Driving: Power grids:

Gourdes
[

Agnareed

v > Prwar Brsman -~ = === R o
\ Dtatance [ /
. 3 x
i ,/‘\ )
Pows Bpsom === = = = ‘,k/ A
Althoff, 2014 Chen and Dominguez-Garcia, 2016
Robot-assisted Surgery: Drug Delivery:
e, Samn | ||,,;,,,,, Glt) [T MY
Punp | Patieat [
Gt
% uwit) (G ;
- u'y/ Algpeithm ]

Chen, Dutta, and Sankaranarayanan, 2017
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging )
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging )

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J

Unsafe

Init

R¢(T, Xy, W) N Unsafe set = 0

S. Jafarpour (CU Boulder)

State space Target

Overapproximation

~ T Reachable set

itial set

R ¢ (Thnal, Xo, W) C Target set
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Reachability Analysis of Systems

Challenges for Modern Autonomous Systems

In many autonomous systems safety cannot be completely ensured at the
design level?. (stochastic environment, human-in-the-loop) J

2Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Reachability Analysis of Systems
Challenges for Modern Autonomous Systems

In many autonomous systems safety cannot be completely ensured at the
design level?. (stochastic environment, human-in-the-loop)

Many autonomous systems contains data-driven components (neural
network controllers, learning-based strategies)

Many autonomous systems are large-scale with interconnected
components (power grids, transportation networks)

Develop reachability algorithms that are
@ computationally efficient
@ adaptable to data-driven algorithms

@ scalable to the size of the system

2|nstitute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)
@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,

2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)
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@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,

2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)

Most of these classical and general approaches are computationally heavy
and are not readily adaptable to data-driven algorithms. J
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Linear, and piecewise linear systems (Ellipsoidal methods) (Kurzhanski and Varaiya, 2000)
@ Optimization-based approaches (Hamilton-Jacobi, Level-set method) (Bansal et al., 2017, Mitchell et al.,

2002, Herbert et al., 2021)
@ Matrix measure-based (Fan et al., 2018, Maidens and Arcak, 2015)

Most of these classical and general approaches are computationally heavy
and are not readily adaptable to data-driven algorithms. J

In this talk: use control theoretic tools to develop
computationally efficient approaches for reachability J
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Outline of this talk

o Reachability Analysis

o Contraction and Monotone Theory

o Analysis of Learning-enabled Feedbacks
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Approach #1: Contraction Theory
A framework for stability analysis

& = f(x,w) is contracting wrt || - | with rate ¢ if
the dist between every two traj is decreasing/increasing with exp rate ¢ wrt || - ||

Applications
@ convergence to reference trajectories
o efficient equilibrium point computation %o 4 it disk with radius e
@ input-output robustness |
@ entrainment to periodic orbits ) T . @b N

In this talk: contraction theory for reachability analysiSJ
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Approach #1: Contraction Theory and Matrix Measures

Definition and Characterization

How to characterize contractivity using vector fields? J

Matrix measure

Given n € RY,

Given a matrix A € R"*" and a norm || - || . .
ven 2 matrix T n(4) = Drnan(cliag( )A+ATd1ag(n))
fy(A) == lim M pin(A) = max ajj +Z | Gty
h—0+ h
foo(A) = max an + Z a3t
o directional derivative of matrix norm || - || in direction of A at point I,,,

@ In the literature: one-sided Lipschitz constant, logarithmic norm

Classical result

& = f(x,w) is contracting wrt || - || with rate c iff

0
(5L (=,

w)) < ¢,

for all x, w

S. Jafarpour (CU Boulder)
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Approach #1: Contraction-based Reachability
A global bound

Assume .| (%(:1;,11))) < ¢ and H%(w,w)“ </

If Xo = By (r1,2§) and W = By (ra, w*), then | [
-

Rf(t, Xo) C BH.”(ed?“l aF é(ed = 1)T2,l‘*(t))

where z*(-) is the solution of & = f(z,w*) with z(0) = .

DF|la(t) — 2* @) < cllz(t) — 2" @) + Llw (@) —w*]| |

@ generalized version of Gronwall's lemma

@ overly conservative since ¢ and ¢ are defined globally
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Approach #2: Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if
24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if

24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

. - State S
Monotonicity test 2l opace

Ordered

Trajectories
o %(m,w) is Metzler (off-diag > 0) i

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Approach #2: Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if

24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

. - State S
Monotonicity test 2l opace

Ordered

Trajectories
o %(m,w) is Metzler (off-diag > 0) i

In this talk: monotone system theory for reachability analysis

)

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Approach #2: Reachability of Monotone Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

R (t, [2o, To]) C [2w(t), zw(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)
starting at x (resp. To)
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Approach #2: Reachability of Monotone Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

Rf(t7 [107E0]) - [xﬂ(t)ﬂ xﬁ(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)

starting at x (resp. To)
Overapproximation with w
Example: 2+ .y
il’l _$§—l‘1+w o1 -
dt |xza| ) = o
—-0.5| (0.5 0 ,
— — with w
o I I
-1 0 1 2 3 4

X1
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Approach #2: Non-monotone Dynamical Systems

Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets
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Approach #2: Non-monotone Dynamical Systems

Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any

over-approximation of reachable sets

Example:
d |z _ 53—z tw
dt |za| T

W=[22,23 X-= H_Oﬁ] | [0‘5”

—-0.5] 7 (0.5

S. Jafarpour (CU Boulder) Safety of Learning-enabled Feedback systems

[ Not Overapproximation
2 [~~~
1 -
X
ol
X | | | |
-1 0 1 2 3 4
X1
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Approach #2: Mixed Monotone Theory

Embedding into a higher dimensional system

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"
o Assume W = [w, W] and Xy = [z, To]

&= f(z,w) ) Q f(z,w)=d(x,z,w,w) for every z,w

© cooperative: (z,w) — d(z, T, w,w
Embedding system P (z,w) — d(z )

© competitive: (Z,w) — d(z,T,w, W)

d, d are decomposition functions s.t.

T = d(@; z,w, w)’

7 = d(z, T, w, T) Q the same properties for d
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Approach #2: Mixed Monotone Theory

Embedding into a higher dimensional system

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"
o Assume W = [w, W] and Xy = [z, To]

Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(x,z,w,w) for every z,w

© cooperative: (z,w) — d(z,Z, w,w
Embedding system P (2, w) = d(z )

© competitive: (Z,w) — d(z,T,w, W)

i — d(£7$7w7 w)’

T = d(z, T, w, D) @ the same properties for d
&

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

z Yy PR
~ < e — < <
[az] SSE [y] z<y and y<Z

S. Jafarpour (CU Boulder) Safety of Learning-enabled Feedback systems September 11, 2024 22 / 48



Approach #2: Mixed Monotone Theory

Versatility and History

o f locally Lipschitz = a decomposition function exists

The best (tightest) decomposition function is given by

d@(zafawaw) = rI}lIl fi(zau)7 C_lz(£7§7w7m) = H}&X _ fi(Z,U)
z2€[z,7],2;=2; 2€[z,7],2;=7;
u€ [w,w] u€[w,w]
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Approach #2: Mixed Monotone Theory
Versatility and History

o f locally Lipschitz = a decomposition function exists

The best (tightest) decomposition function is given by

d@(zafawaw) = mln fi(zau)7 C_lz(£7§7w7m) = H}&X _ fi(Z,U)
z2€[z,7],2;=2; 2€[z,7],2;=7;
u€ [w,w] u€[w,w]

A short (and incomplete) history:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J
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Approach #2: Embedding System for Linear Dynamical System

A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 -1
@ Example: A=|1 -3 0| = (A" =11 -3 0 AMA— |0 0 0
0 0 1 0 0 1 0 0 O
Linear systems
G2 ()

Original system
= Az + Bw ..@

Embedding system
[A“leg_i_ LAJMZIE_FB—&—M_I_B—E
[AMAZ 4+ | AMz + BT+ B~w
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Approach #2: Reachability using Embedding Systems

Hyper-rectangular over-approximations

Theorem*

(t)
Assume W = [w,w] and Xy = [z, To] and \/r)
z=d(z,7,w,w), z(0) =z E2) .
T =d(7, 2,7, w), z(0) = To =)
Reacha‘ble set
Then R¢(t, Xp) C [z(t), T(t)] Zo
v

*Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Approach #2: Reachability using Embedding Systems

Hyper-rectangular over-approximations

"
Assume W = [w,w] and Xy = [z, To] and ﬂj
x = C_l(ga Ea w, E)v l(o) = Zy L) \
T =d(7, 2,7, w), z(0) = To =)
Reacha‘ble set
Then R(t, Xy) C [z(t),T(t)] Lo
v

(Scalable) a single trajectory of embedding system provides lower bound
(z) and upper bound (T) for the trajectories of the original system. J

*Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Approach #2: Reachability using Embedding Systems

Example

Original System:

d |:l‘1:| o |:.'173—1'2 + ll/':|

dt | g 21

W=1[22,23] A= Higg] ’ [82”

blue = cooperative, red = competitive

Decomposition function
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Approach #2: Reachability using Embedding Systems

Example
Original System: Embedding System:
a4 |7] _ T3—T9 + W ) (23 — To +w
dt | gpo| xq e 4 [w} B [2.2]
@ |z | = |2 ol 1wl =
—0.5 0.5 I Ty — Lo +w w 2.3
ST . N I
z,(0) [—0.5 Z1(0) 0.5
blue = cooperative, red = competitive 2,(0) ~1-05 72(0) ~ o5
Decomposition function
=[]
3 o s
_ _ RI(1, X)
derww = [P0+ |72
T 0
== 2]

September 11, 2024 26 / 48
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Which approach is better?

Comparison between contraction and monotone reachability

Question: How to compare contraction and monotone reachability? )

@ In general these two approaches are not comparable

Contraction Reachability: ~ norm-ball — norm-ball
Monotone Reachability: hyper-rectangles +— hyper-rectangles J

5 Jafarpour and Coogan, “Monotoncity and contraction on polyhedral cones”, under review, 2023
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Which approach is better?

Comparison between contraction and monotone reachability

Question: How to compare contraction and monotone reachability?

J

@ when contraction is wrt diagonally weighted /,.-norm: they are comparable

4 |z _ |dz, 7 w,w)| _ . . . .
Leie & [ ] = [d(% m,w,w)] = e(z,T,w,w) be the embedding function with the tight

decomposition functions for & = f(x,w). For any n € R%,

Hoo, <§—£(x,w)) <S¢ = loomels (8?%] (x,x,w,w)) <c
x

@ Monotone reachability is at least as accurate as contraction reachability

@ Monotone hyper-rectangles shrink/expand with rate of contraction of original system J

5 Jafarpour and Coogan, “Monotoncity and contraction on polyhedral cones”, under review, 2023
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Outline of this talk

o Reachability Analysis
o Contraction and Monotone Theory

o Systems with Learning-enabled Feedbacks
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system

&= f(z,N(z),w) = f(z,w)
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

disturbance w e W —T

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system

&= f(z,N(z),w) = f(z,w)

u = N(x) is k-layer feed-forward neural net

PO (W D=1 () 4 pE=1)y
=69 u=w®e®(g) 4 p®) .= N(2),
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

disturbance w e W —T

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system
Challenge: directly performing

z = f(z,N(z),w) := f(z,w) reachability on f¢ is complicated

N(x) is high dimensional and has a large

u = N(x) is k-layer feed-forward neural net 4 of parameters

PO (W D=1 () 4 pE=1)y
=69 u=w®e®(g) 4 p®) .= N(2),

I
=
—
8
SN—
I

4
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a
parameter J
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a
parameter J

Neural network verification algorithm for bounds on u J
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a } Sjg(stem )
X =f(x,u,w
parameter J € X
disturbance w e W
. . - [
Neural network verification algorithm for bounds on u J %

System
=1 uw)
X0 € Xo

Reachability of open-loop system + Bounds from neural
network verification algorithms J

disturbance w e W
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a } Sjg(stem )
X =f(x,u,w
parameter J € X
disturbance w e W
. e . - [
Neural network verification algorithm for bounds on u J %

System
S =f(ruw)
xo X

Reachability of open-loop system + Bounds from neural
network verification algorithms J

S

disturbance w € W

If not carefully implemented, it can lead to overly-conservative results. J
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Systems with Neural Network Controllers

Literature Review

@ Everett and Habibi and Sun, and How, Reachability analysis of neural feedback loops, IEEE Access, 2021

@ Hu and Fazlyab and Morari and Pappas,Reach-SDP: Reach- ability analysis of closed-loop systems with
neural network controllers via semidefinite programming, CDC, 2020.

@ Huang and Fan and Chen and Li and Zh, POLAR: A polynomial arithmetic framework for verifying
neural-network controlled systems, ATVA, 2022.

@ Schilling and Forets, and Guadalup, Verification of neural- network control systems by integrating Taylor
models and zonotope, AAAI, 2022
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Literature Review

@ Everett and Habibi and Sun, and How, Reachability analysis of neural feedback loops, IEEE Access, 2021

@ Hu and Fazlyab and Morari and Pappas,Reach-SDP: Reach- ability analysis of closed-loop systems with
neural network controllers via semidefinite programming, CDC, 2020.

@ Huang and Fan and Chen and Li and Zh, POLAR: A polynomial arithmetic framework for verifying
neural-network controlled systems, ATVA, 2022.

@ Schilling and Forets, and Guadalup, Verification of neural- network control systems by integrating Taylor
models and zonotope, AAAI, 2022

The existing approaches in the literature are either
@ only applicable to a specific class of systems and learning algorithms

@ computationally burdensome
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Systems with Neural Network Controllers
Literature Review

@ Everett and Habibi and Sun, and How, Reachability analysis of neural feedback loops, IEEE Access, 2021

@ Hu and Fazlyab and Morari and Pappas,Reach-SDP: Reach- ability analysis of closed-loop systems with
neural network controllers via semidefinite programming, CDC, 2020.

@ Huang and Fan and Chen and Li and Zh, POLAR: A polynomial arithmetic framework for verifying
neural-network controlled systems, ATVA, 2022.

@ Schilling and Forets, and Guadalup, Verification of neural- network control systems by integrating Taylor
models and zonotope, AAAI, 2022

The existing approaches in the literature are either
@ only applicable to a specific class of systems and learning algorithms

@ computationally burdensome

In this talk: computationally efficient reachability using monotone theory

a system theoretic perspective toward composition

v
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Reachability of Open-loop System
A Constructive Approach

Jacobian-based: & = f(x,u) such that € [Jpa Jiz.7]] and [i[@ﬂ],{_][ﬁﬂ]}, then

C:l(£7 T, U, E) [J[x x] J[a: x] J[u u}]i [%[g,ﬂ]]i u + f(@v Q)
d(ga T,u, H) [‘][z x] + J[z w] J[u u}]+ [J[y,ﬂ]]+ u f($7 7—1’)
is a decomposition function for & = f(z,u).

SHarapanahalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to
Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
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Reachability of Open-loop System
A Constructive Approach

Jacobian-based: & = f(x,u) such that € [Jpa Jiz.7]] and [i[@ﬂ],{_][ﬁﬂ]}, then

C:l(£7 T, U, E) [J[x x] J[a: x] J[u u}]i [%[g,ﬂ]]i u + f(@v Q)
d(ga T,u, H) [‘][z x] + J[z w] J[u u}]+ [J[y,ﬂ]]+ u f($7 7—1’)
is a decomposition function for & = f(z,u).

@ Interval arithmetic allows computing Jacobian
bounds efficiently.

%Harapanahalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to
Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023

Safety of Learning-enabled Feedback systems September 11, 2024 32 /48

S. Jafarpour (CU Boulder)



Reachability of Open-loop System
A Constructive Approach

Jacobian-based: & = f(x,u) such that € [Jpa Jiz.7]] and [i[@ﬂ],{_][ﬁﬂ]}, then

e zum) = Lo o H] Eew %itz:zJH HE bt

is a decomposition function for & = f(z,u).

@ Interval arithmetic allows computing Jacobian
bounds efficiently.

e npinterval® Toolbox that implements intervals e ST
. . _ 2 asin((xy —x» T
as native data-type in numpy. g<n-xz>—[(-nmzsjzxsm((»] 2)/4)]
g(x1,x) =

[x% +2x1x) +.\%,4sin(x| /4)cos(x; /4) —4cos(x; /4) sin(x2/4)]T

SHarapanahalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to

Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
S. Jafarpour (CU Boulder) Safety of Learning-enabled Feedback systems September 11, 2024 32 /48



Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

U 7] < N(z) < Upgz, forallze [z, T]

"Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

Uz < N(@) STz, forallz € [z,7]

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

7Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

Upz) S N(@) STz, forallz € [2,7]

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

@ Bounding the value of each neurons

@ Linear upper and lower bounds on the
activation function

"Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

P = v os(¢ + f(uz))

Py = vsin(¢ + 5(uz))

(~8,8) (8,8)

b= sim(Bu)| |
b=y e

L
B(ug) = arctan ( tan(usg)
lf + lr ) e (~8,-8) (8,-8)
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

Pe = vcos(¢ + B(uz))
py = vsin(¢ + B(uz))

B(ug) = arctan ( i

Iy +

§ = - sin((u2))

T

i}:ul

- tan(U2)>

v

py| <

Pz

(~8,8) (8,8)

(—8,-8) (8,-8)

Goal: steer the bicycle to the origin avoiding the obstacles J
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Case Study: Bicycle Model
A naive compositional approach

(~8,8) (8,8)

Dynamics of bicycle

Pr = veos(d+ Buz) &= 5 sin(B(uz))

T

py = vsin(é + B(uz)) U =1uy

B(ug) = arctan (lf l_; L tan(w))

py| <

(—8,-8) (8,-8)

y Pz

Goal: steer the bicycle to the origin avoiding the obstacles J

@ train a feedforward neural network 4 — 100 +— 100 — 2 with ReLU activations using data
from model predictive control
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0,0)

o Ay = [Qo,fo] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Embedding system:

CIRNES
([
al e
& &
& &l
I~
8 gl
& I&
CaC

u < N(z) <, for every z € [z,T].
September 11, 2024 35 / 48
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

@ start from (8,8) toward (0,0)
o Ay = [QO,T()] with

2y = (7.95 7.95 —T—001 1.99)"
To= (805 805 —Z+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Euler integration with step h:

Dy 44 //' Dy 44 J
Zy :£O+hd(£07507ﬂ07ﬂ07w7w) ] 51
T1 = To + hd(g()’TOvﬂOaﬂOaw’ w) o] 0
_ _ 0 2 4 6 8 0 2 4 6 8
uy < N(z) <y, for every x € [z, To). Pa Pz
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Reachability of Closed-loop System
Case Study: Bicycle Model

@ start from (8,8) toward (0,0)

e Xy= [QO,T()] with

2y = (7.95 7.95 —T—001 1.99)"
To= (805 805 —Z+001 201)"

@ CROWN for verification of neural network

V.

Euler integration with step h:

Zy = 21 + hd(z1, T1, Uy, UL, W, W)

To = T1 + hd(z, T1, Uy, U1, W, W)

S. Jafarpour (CU Boulder)

u; < N(z) <y, for every x € [x,T1].

Safety of Learning-enabled Feedback systems

(8.8)

o = start

o = destination

(8,-8)

0

2

4
Pz

6

8

0 2 a 6
Pz
September 11, 2024

8
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
£
8 < 8 a
\
. . : \
Euler integration with step h: ° ! ° ;
Dy = Dys .
[— — PR— 7/ 7
L3 = Lo A hC_i(£2, T2, Uy, U2, W, w) , 'éff""}’ s
T3 :TQ +hd(£27527ﬂ27ﬂ2aw7w) o o
o _ 0 2 4‘! 6 é 0 2 4 6 8
uy < N(x) < Uy, for every x € [z4,Ta). Pa Pa
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Reachability of Closed-loop System

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
This approach does not capture the stabilizing effect of the neural network. J
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Reachability of Closed-loop System

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
This approach does not capture the stabilizing effect of the neural network. J

An illustrative example
T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
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Reachability of Closed-loop System
Issues with the compositional approach
Neural network controller as disturbances (worst-case scenario)
This approach does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Decomposition #1 Decomposition #2

First find the bounds u < Kz < @, then

First replace u = Kx in the system, then

+ut+w t=(1-K)z+w
m (1-K)z+w

SIRNIS

System is unstable with contraction rate 1.) System is stable with contraction rate 1 — K.

o
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Reachability of Closed-loop System
Issues with the compositional approach
Neural network controller as disturbances (worst-case scenario)
This approach does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
Decomposition #1 Decomposition #2
First find the bounds u < Kx < w, then First replace u = Kx in the system, then
t=z+utw t=(1-Kz+w
T=T+u+w T=(1-K)z+w
System is unstable with contraction rate 1.) System is stable with contraction rate 1 — K.

o

Key observation: capture stabilizing effect of neural networks in the original system )
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Reachability of Closed-loop System
Issues with the compositional approach
Neural network controller as disturbances (worst-case scenario)
This approach does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
Decomposition #1 Decomposition #2
First find the bounds u < Kx < w, then First replace u = Kx in the system, then
z=z+tutw z=(1-K)z+w
T=T+u+w T=(1-K)z+w
System is unstable with contraction rate 1.) System is stable with contraction rate 1 — K.)

Key observation: capture stabilizing effect of neural networks in the original system J

Recall: monotone hyper-rectangles shrink /expand with contraction rate of
the original system J
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Functional Bounds for Neural Networks

Function Approximation

We need to know the functional dependencies of neural network bounds )

8Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Functional Bounds for Neural Networks
Function Approximation

We need to know the functional dependencies of neural network bounds )

Functional bounds: Given a neural network controller u = N(x)

Nig () < N(z) < N[LE] (x), forall z € [z,T]

8Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Functional Bounds for Neural Networks
Function Approximation

We need to know the functional dependencies of neural network bounds J

Functional bounds: Given a neural network controller u = N (z)

M[LE] () < N(z) < N[LE] (x), forall z € [z,T]

o Example: CROWNS8can provide functional bounds.

CROWN functional bounds: CROWN input-output bounds:
_ R iy
Mo () = dpav + by Upa] = Apz® + Apa + bz,
Nipz)(2) = Azt + bl Tiez) = Ajga)® + Apm2 + izl

8Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Interaction Approach

A pictorial explanation

Original system: Embedding system:

—i= @ N@0 f— ]

closed-loop system

enr gl e }—

closed-loop embedding system
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Interaction Approach
A pictorial explanation

Original system: Embedding system:

_.[55: flz, N(z ]_. —{B- 2 1 ek el o

closed-loop embedding system

closed-loop system

How does the interaction approach work?

@ Closed-loop decomposition function = Jacobian based for f(z, N(x),w).
@ Neural Network affine functional bounds

Nz = é[&@]x + 0 7

Nigg = Apz2 + bz

are used to compute the interactions.
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Systems with Neural Network Controllers
Interaction Approach

a1 Tl 5L € [Twap Ja) and 95 € [y z), Twa]- Then

d;é,z:z:iii] -l 52 ) B+ e et (5]

H =

[z,7]

I + ] A + Ll
J

A
H=Jypz+ [Lyal Az + [Luul 4

[z,7]

is a decomposition function for the closed-loop system.

% Jafarpour, Harapanahalli, Coogan. *
Feedback Loops”, under review, 2021
S. Jafarpour (CU Boulder)

Efficient Interaction-aware Interval Reachability of Neural Network
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Case Study: Bicycle Model

Numerical Experiments

e start from (8,7) toward (0,0)
o Xy = [z, To| with

zy=(7.95 6.95 —2—0.01 1.99)"
To= (805 7.05 —2T4+0.01 2.01)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

4
81 runtime: 0.028 + 0.003 87 runtime: 0.047 + 0.002
° / °
Pya J Dy 4
2 2
0 04
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Pz Dz
Naive Composition Interaction Approach
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Case Study: Vehicle Platooning

Scalability Experiments

Dynamics of the jth vehicle . g f
pl=vi, o =tanh(ul) + wl, o 2
Py = vy, vz = tanh(ui) + wg,, : . f !

where wl, wi ~ U([—0.001,0.001]). First / /

vehicle uses a neural network controller : f

4 x 100 x 100 x 2, with ReLU activations g /

0 2 4 6 8100 2 4 6 8100 2 4 6 8 10

and other vehicles use PD controller

| N (units) [ # of states | Our Approach (s) [ POLAR (s) [ JuliaReach (s) |

Jj—1 - -
; ; - v 1 2 0.635 9.352 0.224
ul = ky | ) e vy — T% 4 16 1.369 14.182 12,579
[P 9 36 3.144 43.428 59.929
S 20 80 9.737 316.337 -
+ ky (vl — v, 50 200 46.426 4256.435 -

Table: Run-time comparison with existing approaches

where d € {z,y}.
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Conclusions
and follow-up work

@ Reachability as a framework for safety certification
@ Contraction and monotone theory as computationally efficient methods for reachability
@ Reachability of neural network controlled systems

Contraction theory can capture the interaction between system and neural network
controller

Follow-up work: Forward invariance (safety guarantees for infinite time)

Harapanahalli, Jafarpour, and Coogan. Forward Invariance in Neural Network Controlled
Systems. |EEE Control Systems Letters, Dec 2023 J
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Future Research Directions

Reachability of Stochastic Systems

In monotone theory: uncertainty w € W = [w, W] are treated as
worst-case using w and w J
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Future Research Directions
Reachability of Stochastic Systems

In monotone theory: uncertainty w € W = [w, W] are treated as
worst-case using w and w J

@ In some applications, we can obtain some statistical knowledge of uncertainty v.

@ In some applications we can learn statistics of the uncertainty.
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Future Research Directions
Reachability of Stochastic Systems

In monotone theory: uncertainty w € W = [w, W] are treated as
worst-case using w and w J

@ In some applications, we can obtain some statistical knowledge of uncertainty v.
@ In some applications we can learn statistics of the uncertainty.

@ Use data to approximate a probability distribution for the uncertainty v ~ D

Stochastic dynamical system:

dx = f(x,w)dt + dv where v ~ D
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Future Research Directions
Reachability of Stochastic Systems

In monotone theory: uncertainty w € W = [w, W] are treated as
worst-case using w and w J

In some applications, we can obtain some statistical knowledge of uncertainty v.

In some applications we can learn statistics of the uncertainty.

@ Use data to approximate a probability distribution for the uncertainty v ~ D

Stochastic dynamical system:

dx = f(x,w)dt + dv where v ~ D

@ Question: how to incorporate this stochastic uncertainty in neural network algorithms?

@ Question: how to incorporate this stochastic uncertainty in closed-loop reachability?
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Future Research Directions

Beyond hyper-rectangular estimates

Monotone theory: hyper-rectangular over-approximation )
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Future Research Directions

Beyond hyper-rectangular estimates

Monotone theory: hyper-rectangular over-approximation )

@ In mechanical systems, hyper-rectangular over-approximations are too conservative

@ Example: no hyper-rectangular invariant sets for a simple inverted pendulum

T
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Future Research Directions
Generalized Monotone Theory

A dynamical system & = f(z,w) is monotone (with respect to cones K, C) if
2u(0) Rk yw(0) and u=cw =  x,(t) 2Kk yu(t) forall time

where <k (=) is the partial order with induced by the cone K (cone C).
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and u=cw = x4(t) 2Kk yu(t) for all time

where <k (=) is the partial order with induced by the cone K (cone C).

A polyhedral cone has the form

K={yeR"|Hgy>0,} ={Vky |y >0}
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Future Research Direction
Generalized Monotone Theory

@ Question: how to extend to mixed monotone systems?
@ Question: how to search for the cone with tightest reachable set approximation?

@ Question: how to incorporate the knowledge of trajectories of the system from data in
this approach?
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Future Research Directions
Design of Learning Algorithms

In this talk: verification of neural networks using state-of-the-art algorithms J
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Implicit/Recurrent Fixed-point/dynamics

z = ®(Ax 4+ Bu +b)
g t=—x+ ®(Az + Bu+0b)
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Implicit/Recurrent Fixed-point/dynamics

z = ®(Ax 4+ Bu +b)
g t=—x+ ®(Az + Bu+0b)

If poo(A) = max;(ai; + >, aij]) < 1 then
@ the dynamics is contracting with respect to || - ||

@ /-norm Lipschitz constant = % + || D|loo
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In this talk: verification of neural networks using state-of-the-art algorithms J

How to design robust standalone neural networks? Input-output Lipschitz constant |

Implicit/Recurrent Fixed-point/dynamics

z = ®(Ax 4+ Bu +b)
t=—x+ ®(Az + Bu+0b)

If oo (A) 1= maxi(as + 5 ;.; |aij]) <1 then Closed-form expression for

@ the dynamics is contracting with respect to || - ||oo Lipschitz constant to train
@ /so-norm Lipschitz constant = % + || Do robust neural networks
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Future Research Directions

Design of Learning Algorithms

@ Question: measures of robustness for neural networks in-the-loop?

@ Question: impose safety guarantees in training of learning algorithms? ex: forward
invariance?
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