Mixed Monotone Reachability in Dynamical Systems

with application to safety of learning-enabled systems

Saber Jafarpour

@l University of Colorado Boulder

March 20, 2025



Safety-critical Autonomous Systems

Introduction

Energy/power systems 7 Air mobility Autonomous driving

Manufacturing Transportation systems Agriculture

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 2 / 46



Safety-critical Autonomous Systems

Introduction

Energy/power systems Air mobility Autonomous driving

Manufacturing Transportation systems Agriculture

Many autonomous systems operate in safety-critical environmentSJ

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 2 / 46



Safety-critical Autonomous Systems

Introduction

Energy/power systems Air mobility Autonomous driving

Manufacturing Transportation systems Agriculture

Many autonomous systems operate in safety-critical environmentSJ

An important goal

Perform their tasks while ensuring safety and robustness of the system.
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Safety-critical Autonomous Systems

Introduction

Energy/power systems Air mobility Autonomous driving

Manufacturing Transportation systems Agriculture

Many autonomous systems operate in safety-critical environmentSJ

Provide guarantees for safety and robustness of autonomous systems
Tools: Dynamical systems, Control theory, Operator theory, Optimization theory J
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Research experience and education

@ Queen’s University
Research areas: Geometric control, Functional analysis, Differential geometry

Applications: Controllability of nonlinear systems

@ University of California Santa Barbara
Research areas: Contraction theory for dynamical systems and optimizations

Applications: large-scale systems, optimization algorithms, power grids

@ Georgia Institute of Technology
Research areas: Monotone Dynamical Systems, Convex geometry

Applications: uncertain systems, learning algorithms

@ University of Colorado Boulder
Research areas: Reachability of dynamical systems

Applications: learning-enabled systems
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Safety-critical Autonomous Systems
Learning-enabled systems

In this talk: safety of learning-enabled autonomous system J
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Safety-critical Autonomous Systems

Learning-enabled systems

In this talk: safety of learning-enabled autonomous system J

Significant progress: wide availability of data and computational advances J

Waymo driverless car strikes bicyclist in Robot accident at Amazon
San Francisco, causes minor injuries warehouse renews safety debate

But can we ensure their safety? )
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Safety-critical Autonomous Systems
Learning-enabled systems

In this talk: safety of learning-enabled autonomous system J

Significant progress: wide availability of data and computational advances J

Self-driving vehicles Manufacturing

Fulfillment center

Challenges

@ large number of parameters

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 4 / 46



Safety-critical Autonomous Systems
Learning-enabled systems

In this talk: safety of learning-enabled autonomous system J

Significant progress: wide availability of data and computational advances J

Self-driving vehicles Manufacturing

Fulfillment center

Challenges

@ complicated and highly nonlinear
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Safety-critical Autonomous Systems
Learning-enabled systems

In this talk: safety of learning-enabled autonomous system J

Significant progress: wide availability of data and computational advances J

Self-driving vehicles

Manufacturing Fulfillment center
| 7

Challenges

© operate in uncertain environments
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Safety of Autonomous Systems
Safety from a reachability perspective

Safety of autonomous systems using reachability analysis J
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< unsafe set
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evolution of the autonomous system
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Safety from a reachability perspective

Safety of autonomous systems using reachability analysis J

initial set trajectory

v

< unsafe set

Reachability analysis estimates the
evolution of the autonomous system J

A

. over-approximative

reachable set

In this talk:

© Reachability analysis = a mathematical framework for safety assurance
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Safety of autonomous systems using reachability analysis J

initial set trajectory

v

< unsafe set

Reachability analysis estimates the J

evolution of the autonomous system
A

. over-approximative

reachable set

In this talk:
© Reachability analysis = a mathematical framework for safety assurance

@ Efficient and scalable methods for reachability of dynamical systems
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Safety of Autonomous Systems
Safety from a reachability perspective

Safety of autonomous systems using reachability analysis J

initial set trajectory

v

< unsafe set

Reachability analysis estimates the
evolution of the autonomous system J

A

. over-approximative

reachable set

In this talk:
© Reachability analysis = a mathematical framework for safety assurance
@ Efficient and scalable methods for reachability of dynamical systems

© Application to safety verification of learning-enabled systems
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Outline of this talk

o Reachability Analysis

o Mixed Monotone Reachability

o Safety of Learning-enabled Systems

e Future Research Directions
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Reachability Analysis

A systematic approach for safety assurance

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x1(T)
/

T
x)fz. (T T Reachable set
-—

Initial set

What are the possible states of the system at time 717 J
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A systematic approach for safety assurance

System : & = f(z,w)

State space

C
1)152
et

Initial set

State: z ¢ R"

Xz(T)

State space

Initial set

Uncertainty : w €¢ W C R™

T Reachable set

What are the possible states of the system at time 717 J

@ t-reachable sets characterize evolution of the system

Ry(t, X0, W) = {xw(t) | w(-) is a traj for some w(-) € W with g € Ap} J
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Reachability Analysis
A systematic approach for safety assurance

System : & = f(z,w)

State space

C
1)152
et

Initial set

State: z ¢ R"

Xz(T)

State space

Foim
Initial set

Uncertainty : w €¢ W C R™

T Reachable set

What are the possible states of the system at time 717 J

@ t-reachable sets characterize evolution of the system

Ry(t, X0, W) = {xw(t) | w(-) is a traj for some w(-) € W with g € Ap} J

A large number of safety specifications can be represented using t-reachable sets J
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Reachability Analysis of Systems
Safety verification via t-reachable sets

Definition (Reach-avoid safety)

For an unsafe set &/ C R™ and a target set G C R", system is reach-avoid safe if
Ry(t, Xo,W)N U = 0, for all ¢t € [0, Thpal] (avoid)
Rt (Thnal, X0, W) C G, (reach)
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State space Target
Unsafe
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Reachability Analysis of Systems
Safety verification via t-reachable sets

Definition (Reach-avoid safety)

For an unsafe set &/ C R™ and a target set G C R", system is reach-avoid safe if

Ry(t, Xo,W)N U = 0, for all ¢t € [0, Thpal] (avoid)
Rt (Thnal, X0, W) C G, (reach)
State space Target

Unsafe

i
Initial set

T Reachable set

T Reachable set

Initial set

Combining different instantiation of Reach-avoid safety —>
diverse range of safety specifications
(complex planning using logics, invariance, stability)
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Reachability Analysis of Systems
Why is it difficult?

Checking if a point belong to t-reachable sets is undecidable! J

1C. Moore, Unpredictability and undecidability in dynamical systems, 1991
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Reachability Analysis of Systems
Why is it difficult?

Checking if a point belong to t-reachable sets is undecidable! J

Solution: over-approximations of reachable sets )

Definition: over-approximation

A set Ry(t, Xy, W) C R™ is over-approximations of t-reachable sets if
Rf(ta X, W) - ﬁf(ta X, W)
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Reachability Analysis of Systems
Why is it difficult?

Checking if a point belong to t-reachable sets is undecidable! J

Solution: over-approximations of reachable sets J

Definition: over-approximation

A set ﬁf(t, Xo, W) C R™ is over-approximations of ¢-reachable sets if
Rf(ta X, W) - ﬁf(ta X, W)

State space Target

Unsafe

Overapproximation

T Reachable set

Initial set Initial set T

R¢(T, Xy, W) N Unsafe set = 0 R ¢ (Thnal, Xo, W) C Target set

1C. Moore, Unpredictability and undecidability in dynamical systems, 1991
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Reachability Analysis of Systems
Literature review

Reachability of dynamical systems is an old problem J
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Reachability Analysis of Systems
Literature review

Reachability of dynamical systems is an old problem )
Properties of reachable sets J Approximating reachable sets J
@ Skolem-Pisot problem (Skolem, 1934) @ Numerical method for HJB (Mitchell

o Dynamic programing and HJB et al., 2002, Bansal et al., 2017)
(Bellman, 1957) o Ellipsoidal approximations (Kurzhanski

e Geometric control (Sussmann and and Varaiya, 2000)
Jurdjevic, 1972) @ Polynomial models (Chen, Dutta, and
Sankaranarayanan, 2012)
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o Dynamic programing and HJB et al., 2002, Bansal et al., 2017)
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Reachability Analysis of Systems
Literature review

Reachability of dynamical systems is an old problem )
Properties of reachable sets J Approximating reachable sets J
@ Skolem-Pisot problem (Skolem, 1934) @ Numerical method for HJB (Mitchell

o Dynamic programing and HJB et al., 2002, Bansal et al., 2017)
(Bellman, 1957) o Ellipsoidal approximations (Kurzhanski

e Geometric control (Sussmann and and Varaiya, 2000)
Jurdjevic, 1972) @ Polynomial models (Chen, Dutta, and
Sankaranarayanan, 2012)

Most reachability methods are computationally heavy and not scalable to
large-size systems J

In this talk: develop computationally efficient methods for
over-approximating t-reachable sets J
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Outline of this talk

o Reachability Analysis

o Mixed Monotonicity Reachability

o Safety of Learning-enabled Systems

e Future Research Directions
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Monotone Dynamical Systems

Definition and Characterization

Definition: Monotone systems
A dynamical system & = f(x,w) is monotone if

and u<w = 2y,(t) < yu(t)

24(0) < yu(0) for all time

where < is the component-wise partial order.

State Space
Ordered

Trajectories

L (0) Tw (1)

Za (ON$¥/L/Zv

24 (1)

2D. Angeli and E. Sontag, Monotone control systems, 2003
March 20, 2025 12 / 46
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Monotone Dynamical Systems

Definition and Characterization

Definition: Monotone systems
A dynamical system & = f(x,w) is monotone if

= 1y(t) < yu(t) forall time

24(0) < yp(0) and uw<w

where < is the component-wise partial order.

State Space
Ordered

Kamke—Miiller condition?
. . 5 . Trajectories
A dynamical system & = f(z,w) is monotone iff

L (0) Tw (1)

(1 I of =~ (z,w) is Metzler (off-diag > 0) for all z,w
Tu(ON¢¥/L/Kv

Q ; ‘9f (x w) > Opyxm for all z,w za(1)

2D. Angeli and E. Sontag, Monotone control systems, 2003
March 20, 2025 12 / 46
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Monotone Dynamical Systems

Generalization to partial orders

Definition: Monotone systems

A dynamical system & = f(x,w) is monotone if

24(0) =g yw(0) and u=cw =  z,(t) K Yu(t) for all time

where <k (=) is the partial order with induced by the cone K (C).

Proper pointed cone
A proper pointed cone K C R" satisfies

Q ¢ K CK forevery ¢ >0

@ K is closed and convex

© K is pointed (K N (—K) = 0)
Q K is proper int(K) # ()

x g yifandonlyify—xz e K
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Monotone Dynamical Systems

Generalization to partial orders

Definition: Monotone systems
A dynamical system & = f(x,w) is monotone if
= xu(t) Xk yu(t) for all time

24(0) =g yw(0) and u <cw

where <k (=) is the partial order with induced by the cone K (C).

A polyhedral cone has the form

K={yeR"|Hky >0,} ={Vky |y >0p}

vertex rep

halfspace rep

Kamke—Miiller condition3
o HK(%(x,w) + a(x, w)I,)Vk > 0, for some a(z,w)

(2] HK%(Q’J,U))VC > 0y,

°SJ and S. Coogan, Monotonicity and Contraction on Polyhedral Cones, 2024.
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical)*

For a monotone system with W = [w, W]
R(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w(-) (resp.
w(-)) starting at x (resp. o)

*MW Hirsch, H Smith. Monotone dynamical systems, 2006 [Book]
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical)*

For a monotone system with W = [w, W]
R(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w(-) (resp.

w(-)) starting at x (resp. o)
Overapproximation with w
Example: 2+
~>
i r1| ZL‘%—l‘l-Fw o 1r _
dt |z2| T E v
—0.5] [0.5 or :
_ _ with w
(S N I
-1 0 1 2 3 4
X

*MW Hirsch, H Smith. Monotone dynamical systems, 2006 [Book]
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical)*

For a monotone system with W = [w, W]
R(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w(-) (resp.
w(-)) starting at x (resp. o)

gl

Proof: z,(0) =z, < z(0) <

0o = zw(0). By monotonicity of the system

Ty (t) < z(t) < aw(t), forallt >0

= Rf(t7 [107 fO]? [wv @]) - [x&(t)7 wﬁ(t)]

*MW Hirsch, H Smith. Monotone dynamical systems, 2006 [Book]
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Reachability of Monotone Systems
Hyper-rectangular over-approximations

Theorem (classical)*

For a monotone system with W = [w, W]
R(t, [zo, o], [w, w]) C [zw(t), 2w ()]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w(-) (resp.
w(-)) starting at x (resp. o)

does not hold for non-monotone systems J
E le: -
xample 3 Not Overap&oximation
d [z1] _ |23 — 224w 2 ~
dt |z2| T -
g 1 5
—0.5| 0.5
wotz.29 2= ][22, 1] |
X

_1 = | L L L L |
—1 1
*MW Hirsch, H Smith. Monotone dynamical systems, 2006 [Book]

X
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Mixed Monotone Theory
Embedding into higher dimensional systems
o Key idea: embed the dynamical system on R™ into a dynamical system on R?"

o Assume W = [w,w] and Xy = [z, To

Original system

Embedding system
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Mixed Monotone Theory
Embedding into higher dimensional systems
o Key idea: embed the dynamical system on R" into a dynamical system on R?"
@ Assume W = [w,w| and Xp = [z, To]
Original system d, d are decomposition functions s.t. for

= f(z,w) every = € [z,7] and w € [w, W]

i =
o f($7 w) = d(w7 x? w? w)

Embedding system Q f(z,w) =d(z,z,w,w

v
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Mixed Monotone Theory

Embedding into higher dimensional systems

o Key idea: embed the dynamical system on R" into a dynamical system on R?"
@ Assume W = [w,w| and Xp = [z, To]

Original system d, d are decomposition functions s.t. for

= f(z,w) every x € [z,Z] and w € [w, W]

Embedding system Q flz,w)= é(x,l’,w,w

)
Z = d(anwa E), a d(z, E,w,@) S f(ac,w)
z = d(z,Z, w, 0) Q f(z,w) < d(z,7,w,w)

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J
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Mixed Monotone Theory

Embedding into higher dimensional systems

o Key idea: embed the dynamical system on R" into a dynamical system on R?"
@ Assume W = [w,w| and Xp = [z, To]

Original system d, d are decomposition functions s.t. for

= f(z,w) every x € [z,Z] and w € [w, W]

Embedding system Q flz,w)= é(x,l’,w,w

)
T = d(@v‘rawa @), (3] d(@, E,w,ﬁ) < f(x’w)
z= E(laja w, E) (4] f(wi> < a<$’ vavﬁ)

Computing decomposition function
@ close connection with inclusion function in Numerical Analysis®

@ mean-value inequality and interval arithmetic®

°L. Jaulin, et al. Applied Interval Analysis, 2001 [Book]
A Harapanahalli, SJ, S. Coogan, A toolbox for fast interval arithmetic in numpy, 2023
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Mixed Monotone Theory
Embedding into higher dimensional systems

o Key idea: embed the dynamical system on R" into a dynamical system on R?"

o Assume W = [w,w] and Xy = [z, To

Original system

= f(z,w)

Embedding system

d, d are decomposition functions s.t. for
every z € [z,7] and w € [w, W]

o f(:E) w) = d(w7 x? w? w)

In this talk: we use mixed monotone theory for reachability analysis )

S. Jafarpour (CU Boulder)

Mixed Monotone Reachability
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Mixed Monotone Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R(t, Xo, W) C [a(t), 7(

), z(0) = zg
)7 f(0) =Ty

18

7&7

I

&
2l Ig.
8
8 8
gl
SRS

8-
Il

I 9 I

i
Reachable set

7SJ, et al. Efficient interaction-aware interval analysis of neural network feedback loops, 2024.
March 20, 2025 16 / 46
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Mixed Monotone Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R (t, Xo, W) C [x(t), 7(

)s z(0) = zg
) 7(0) = T

bl

7&7

l&-
I
I

I

8l
Il
I
8
8 8
gl
SRS

I 9 I

i
Reachable set

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

7SJ, et al. Efficient interaction-aware interval analysis of neural network feedback loops, 2024.
March 20, 2025 16 / 46
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Mixed Monotone Reachability
Embedding Systems

Assume W = [w, w] and Xy = [z, To| and

(
(

Then R(t, Xo, W) C [a(t), 7(

), z(0) = zg
)? j(0) =

]

7@7

I

8- I
I
I
8

8 &l
gl

SRS

I 9 I

i
Reachable set

~
=
=,

.

a single trajectory of embedding system provides lower bound (z) and
upper bound (Z) for the trajectories of the original system. J

(Computational efficient): solve for one trajectory of embedding system J

(Scalable): embedding system is 2n-dimensional

7SJ, et al. Efficient interaction-aware interval analysis of neural network feedback loops, 2024.
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Mixed Monotone Reachability
Sketch of Proof

The tight decomposition function is given by

7 —
= —
Ei(za €, w, UJ) - ze[;y%l,?i:% f’i(za U), er]:iif,,(z,u) 3 — mas fi(z,u)
u€lw, ] —) —
== _ — ) —
Fi(z,%,w,w) = max _ fi(z,u) ‘ :
2€[z,T],2;=%; Z; T;
uw€E[w,w)
v
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Mixed Monotone Reachability
Sketch of Proof

The tight decomposition function is given by

AW (&7 T, w, w) = ze[zrlfl]i?:z' fi(za U), min fi(z,)
oo o

= max fi(z,u)

| 4"
2€[z,7],2;=7;
u€[w,w]

TIoT

y

The embedding system from tight decomposition is a monotone system on
R?™ with respect to the southeast partial order <gp:

a5 Y .
~ < = — < <
L] SSE [y] r<y and y<Z

In terms of cones, <sp, is induced by the cone RZ, x —R%,
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Mixed Monotone Reachability
Sketch of Proof

The tight decomposition function is given by

Fi(z,T,w,w) = min fi(z,u),

2€[z,z],2;=2; b filz,u)
u€ [w,w]

max _ fi(2,u)

2€ [z, z], 2;=;
u€w,w]

F’L(&u fa w, w) -

y

The embedding system from tight decomposition is a monotone system on
R?™ with respect to the southeast partial order <gp:

a5 Y .
~ < = — < <
L] SSE [y] r<y and y<Z

In terms of cones, <gg is induced by the cone Rg

By monotone reachability theorem: [i(t;] <cp [igt)] J
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Mixed Monotone Reachability
Sketch of Proof

For every other decomposition function d, d,

tight decomn position

g

tight decomposition
g p

Compare two dynamical systems using classical monotone comparison results®

i-lFes

This leads to

d
’ dt

- ez

Y, W
Y, w

8A. N. Michel, et al. Stability of dynamical systems: Continuous, discontinuous, and discrete systems, 2008
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Outline of this talk

o Reachability Analysis
o Mixed Monotonicity Reachability

o Safety of Learning-enabled Systems

e Future Research Directions
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Learning-enabled Systems
Challenges in safety assurance

Extremely fragile wrt input perturbations J Adversarial Perturbations

Small changes in the input

|

Large changes in the output

1 C. Szegedy, et al. Intriguing properties of neural networks, 2014
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Learning-enabled Systems

Challenges in safety assurance

“airliner”

Extremely fragile wrt input perturbations )

+0.005 x

Image credit: MIT CSAIL

1 C. Szegedy, et al. Intriguing properties of neural networks, 2014
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Learning-enabled Systems

Challenges in safety assurance

“pig” “airliner”

Extremely fragile wrt input perturbations )

v,

+0.005

Image credit: MIT CSAIL

Safety of learning-based systems

Input perturbation set U/ and unsafe output domain S: U —o % - N(u)

NU)NS = 0.

1 C. Szegedy, et al. Intriguing properties of neural networks, 2014
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Learning-enabled Systems

Challenges in safety assurance

“pig” “airliner”

Extremely fragile wrt input perturbations ) D)

+0.005 x

Safety of learning-based systems

Input perturbation set ¢ and unsafe output domain S: U —o - N(u)
NU)NS = 0.
3| |8
@ large # of parameters with nonlinearity u—| S +3~y
O O
O O

B
=]
N

computationally efficient methods to J
478 x 100 x 100 x 10

over-approximate N(i/). 4 of porameters 90000
# of activation patterns ~ 1090

1 C. Szegedy, et al. Intriguing properties of neural networks, 2014
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Generalized Neural Networks

Definition via fixed-point equations

ol (o] o o
ol o] |o 5
Uo7 o-lo oY u Yy
ol [o] |o o .
ol [o] |o o
1 T2 X3 Lk
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Generalized Neural Networks

Definition via fixed-point equations

@) @) (@) @)
| I8l .8l 8
U—1or*o o~ oY - Y
O O (@) O
O O (@) O
ry T2 I3 Lk
@ Feedforward neural networks: @ Generalized neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y = Apa® + by y=Cx+c
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Generalized Neural Networks

Definition via fixed-point equations

@) @) (@) @)
| I8l .8l 8
U—1or*o o~ oY - Y
O O (@) O
O O (@) O
ry T2 I3 Lk
@ Feedforward neural networks: @ Generalized neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y = Apa® + by y=Cx+c

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁ’(y) <l1forall z,y e R
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Generalized Neural Networks

Definition via fixed-point equations

@) @) (@) @)
| I8l .8l 8 '
U — 9) "l O 1O S @) = y u = y
O O (@) O T
O O (@) O
ry T2 I3 Lk
@ Feedforward neural networks: @ Generalized neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function
@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R
Notion of Layer: output is defined implicitly as a function of inputJ

e.g., fixed-point equation, differential equations, optimization problem
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Generalized Neural Networks

Definition via fixed-point equations

@) @) (@) @)
| I8l .8l 8 '
U — 9) "l O 1O S @) = y u = y
O O (@) O T
O O (@) O
ry T2 I3 Lk
@ Feedforward neural networks: @ Generalized neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R

@ S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models, NeurlPS, 2019
@ L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. SIMODS, 2019 J
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Generalized Neural Networks

Definition via fixed-point equations

@) @) (@) @)
| I8l .8l 8
U—1or*o o~ oY - Y
O O (@) O
O O (@) O
ry T2 I3 Lk
@ Feedforward neural networks: @ Generalized neural networks:
= @At + by), 2% =u x=®(Ax + Bu+b)

y:Akxk—i-bk y:Cl‘—I-C

o O(y1,....yn) = (61(y1)s ..., dn(yn)) " is a diagonal activation function

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁl(y) <l1forall z,y e R

Advantages: Representation, Performance, Memory J
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Generalized Neural Networks
A dynamical system perspective

Main Questions

x = ®(Az + Bu+b)
u=Cx+c
@ Existence and computation of solutions?

@ How to estimate the input-output x — w robustness?
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Generalized Neural Networks
A dynamical system perspective

Main Questions

x = ®(Az + Bu+b)
u=Cx+c
© Existence and computation of solutions?

@ How to estimate the input-output = > u robustness?

Key insight

Fixed-point equation = Dynamical system
z = ®(Ax + Bu+b) &t =—x+ ®(Azx + Bu+b)
fixed-points = equilibrium points
robustness = reachability (¢t = co)

@ We can use tools from dynamical systems to study generalized neural networks
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Embedding Neural Network
Mixed Monotone Reachability

o Metzler/non-Metzler decomposition: A = [A]MA 4 | A|MA

o Example: A = E _;J — (AN = E _03} LAMA — [8 01}

126 et al. Robust implicit networks via non-Euclidean contractions, 2022
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Embedding Neural Network
Mixed Monotone Reachability

o Metzler/non-Metzler decomposition: A = [A]MA 4 | A|MA
R P Ma _ |20 Mz _ |0 —1
@ Example: A = [1 _3} = [A|" = [1 _3} [AJY =

Dynamical system perspective

Original system u € [u,q]

Tight embedding system
. §] _ [a] , [®(AMAL + [A]MF 4 [B*u+ [B] " +b)
#=-2+2Az+Buth) = [E} - M u {@([A]lem | AM7lg 4 [B]+% + [B]~u + b)

126 et al. Robust implicit networks via non-Euclidean contractions, 2022
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Embedding Neural Network
Mixed Monotone Reachability

o Metzler/non-Metzler decomposition: A = [A]MA 4 | A|MA

o Example: A = E _ﬂ — (AN = E _03} LAMA — [8 01}

Dynamical system perspective

Original system u € [u, | Tight embedding system

o §] _ [a] , [®(AMAL + [A]MF 4 [B*u+ [B] " +b)

BE —a Ui B = [E} - M + [@((A} Melg 4 | A|Mg 4 [B]*u+ [B] " u+b)
Theorem??

If max;{a;; +3_;;|ai;|} <1and u € [u,7]

*
O tight embedding system has a unique equilibrium point [i*}

o (1 o) [E] +e << (o1 ) [E] +e

T* T*

126 et al. Robust implicit networks via non-Euclidean contractions, 2022
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Numerical Experiments

MNIST dataset classification

@ MNIST dataset: 28 x 28 pixel handwritten digits between 0 — 9. E
@ Generalized NN with n = 100.

@ ¢ = size of perturbation, U = [u — €l7g4, u + €l7gy].

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 24 / 46



Numerical Experiments

MNIST dataset classification

@ MNIST dataset: 28 x 28 pixel handwritten digits between 0 — 9. E
@ Generalized NN with n = 100.

@ ¢ = size of perturbation, U = [u — €l7g4, u + €l7gy].

Lipschitz Approach Mixed Monotone Approach
NU) C [y — Looe,y + Looe] N(U) C [y(e), 7(e)]
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Numerical Experiments
MNIST dataset classification

o MNIST dataset: 28 x 28 pixel handwritten digits between 0 — 9. E
@ Generalized NN with n = 100.

@ ¢ = size of perturbation, U = [u — €l7g4, u + €l7gy].

Lipschitz Approach Mixed Monotone Approach
NU) C [y — Looe,y + Looe] N(U) C [y(e), 7(e)]
Lo Certified robustness vs perturbation Lo Empirical robust accuracy vs perturbation
o —— Mixed-Monotone with " = T T
2 0.8 Mixed-Monotone with T = I
3 —— Lipschitz, Lip= 1468.2 081
3 061 1 i=labelu >
- (T =4 -1 i=j £ 069
__3 04 0 otherwise 8
- 0.4
K]
=0.24
QE — PGD
0.2
0.0 FGSM
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.00 0.05 0.10 0.15 0.20
(~ amplitude of perturbation (, amplitude of perturbation
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Outline of this talk

o Reachability Analysis
o Mixed Monotonicity Reachability
o Safety of Learning-enabled Systems

e Future Research Directions
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Future Research Directions

Reachability of stochastic dynamical systems

Mixed monotone reachability: uncertainty w € W = [w, W] are treated
as worst-case using w and w J

198J, Z. Liu, and Y. Chen, “Probabilistic Reachability of Stochastic Systems”, submitted to TAC 2024
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@ Use data to approximate a probability distribution V ~ D
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@ In many applications, we get some statistical knowledge of uncertainty V'

@ Use data to approximate a probability distribution V ~ D

Stochastic dynamical system:

dX = f(X,w)dt + dV where V ~ D
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Reachability of stochastic dynamical systems

Mixed monotone reachability: uncertainty w € W = [w, W] are treated
as worst-case using w and w J

@ In many applications, we get some statistical knowledge of uncertainty V'

@ Use data to approximate a probability distribution V ~ D

Stochastic dynamical system:

dX = f(X,w)dt + dV where V ~ D

@ Question: how to incorporate this stochastic uncertainty in reachability?
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Future Research Directions

Reachability of stochastic dynamical systems

Mixed monotone reachability: uncertainty w € W = [w, W] are treated
as worst-case using w and w J

@ In many applications, we get some statistical knowledge of uncertainty V'

@ Use data to approximate a probability distribution V ~ D

Stochastic dynamical system:

dX = f(X,w)dt + dV where V ~ D

@ Question: how to incorporate this stochastic uncertainty in reachability?

Separation Strategy: a suitable Lyapunov function to separate the
stochastic noise and deterministic disturbance J

198J, Z. Liu, and Y. Chen, “Probabilistic Reachability of Stochastic Systems”, submitted to TAC 2024
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Future Research Directions
Reachability of interconnected hybrid systems

Reachability of large-scale interconnected hybrid systems
Example: power grids J

118, P. Cisneros, F. Bullo, Contraction Theory for Dynamical Systems on Hilbert Spaces, 2022
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Future Research Directions
Reachability of interconnected hybrid systems

Reachability of large-scale interconnected hybrid systems
Example: power grids J

@ Mixed monotone reachability for hybrid and switched systems

@ Pattern of interconnection structure in embedding system

118, P. Cisneros, F. Bullo, Contraction Theory for Dynamical Systems on Hilbert Spaces, 2022
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Future Research Directions

Reachability of interconnected hybrid systems

Reachability of large-scale interconnected hybrid systems
Example: power grids J

@ Mixed monotone reachability for hybrid and switched systems

@ Pattern of interconnection structure in embedding system

Coupled oscillator model of power grids

éi = W;
M;w; = p; — Diw; + Z;L:I Q5 sin(Gj = 91)

where a;; = |Y;;|V;V; is the active power capacity of line (i, j)

118, P. Cisneros, F. Bullo, Contraction Theory for Dynamical Systems on Hilbert Spaces, 2022
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Future Research Directions

Reachability of interconnected hybrid systems

Reachability of large-scale interconnected hybrid systems
Example: power grids J

@ Mixed monotone reachability for hybrid and switched systems

@ Pattern of interconnection structure in embedding system

Coupled oscillator model of power grids

éi = W;
M;w; = p; — Diw; + Z;L:I Q5 sin(Gj = 91)

where a;; = |Y;;|V;V; is the active power capacity of line (i, j)

@ Question: how to choose a suitable cone K for Mixed monotone reachability?

118, P. Cisneros, F. Bullo, Contraction Theory for Dynamical Systems on Hilbert Spaces, 2022
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Future Research Directions

Reachability of interconnected hybrid systems

Reachability of large-scale interconnected hybrid systems
Example: power grids J

@ Mixed monotone reachability for hybrid and switched systems

@ Pattern of interconnection structure in embedding system

Coupled oscillator model of power grids

éi = W;
M;w; = p; — Diw; + Z;L:I Q5 sin(Gj = 91)

where a;; = |Y;;|V;V; is the active power capacity of line (i, j)

@ Question: how to choose a suitable cone K for Mixed monotone reachability?

@ Question: how to extend Mixed monotone reachability to infinite dimensional spaces?'!

118, P. Cisneros, F. Bullo, Contraction Theory for Dynamical Systems on Hilbert Spaces, 2022
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Future Research Directions
Safety beyond reachability

Safety using Barrier and Lyapunov functions for monotone systems J
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Future Research Directions
Safety beyond reachability

Safety using Barrier and Lyapunov functions for monotone systems J

@ Barrier function B : R" — R for dynamical system & = f(z,w):

B(z) <0 for all x € &)

B(z)>0 forallz e

0B _

%(:I:)f(x,w) <0 for all w € [w,w] and z s.t. B(z) =0

Then system is always safe (never enters the unsafe region)
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@ Barrier function B : R" — R for dynamical system & = f(z,w):

B(z) <0 for all x € &)

B(z)>0 forallz e

0B _

%(:I:)f(x,w) <0 for all w € [w,w] and z s.t. B(z) =0

Then system is always safe (never enters the unsafe region)

Barrier introduce a functional perspective toward safety analysis )
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B(z)>0 forallz e

0B _

%(:I:)f(x,w) <0 for all w € [w,w] and z s.t. B(z) =0
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Future Research Directions
Safety beyond reachability

Safety using Barrier and Lyapunov functions for monotone systems J

@ Barrier function B : R" — R for dynamical system & = f(z,w):

B(z) <0 for all x € &)

B(z)>0 forallz e

0B _

%(:I:)f(x,w) <0 for all w € [w,w] and z s.t. B(z) =0

Then system is always safe (never enters the unsafe region)

Barrier introduce a functional perspective toward safety analysis )

@ Numerous efficient methods for finding B in the literature

@ Question: Does monotonicity of & = f(z,w) impose any structure on B?
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Teaching Interests
Plans and vision for teaching

1550: Differential and Integral Calculus

2030 Discrete Dynamical Systems

2065 Elementary Differential Equations

2070 Mathematical Methods in Engineering

2090 Elementary Differential Equations and Linear Algebra
4025 Optimization Theory and Applications

4027 Differential Equations

7320 Ordinary Differential Equations

© Contraction theory for dynamical systems and optimization algorithms
topics: monotone operator theory, normed spaces, dynamical systems

@ Dynamical systems on networks
topics: Nonlinear dynamical systems, algebraic graph theory, matrix theory
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Thank you for your attention!



Back up Slides



Kamke— Muller condition

Non-differentiable vector fields

A system @ = f(z,w) satisfies Kamke— Miiller condition if, for every x <y,
every u < w, and every i € {1,...,n},

T =Yi —> fl(x7u) < fi(yaw)
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Embedding System for Linear Dynamical System

A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 —1
@ Example: A=|1 -3 0| = (A" =11 -3 0 [AMZA = {0 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
= Az + Bw ..@

Embedding system

Z: [A“leg_i_ LAJMZIE_FB—&—M_I_B—E
z=[AM7Z + |AMz + B*w+ B w
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Mixed Monotone Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J
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Mixed Monotone Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

@ Assume f : R — R is scalar:

Mean-value Inequality

f@) + [min.cez 5] (7 —2) < f(0) < (@) + [maxepes 3| @ - 2)

where [A]T = max{A,0} and [A]” = min{A4, 0}.
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Mixed Monotone Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

@ Assume f : R — R is scalar:

Mean-value Inequality

s+ min I @0 < 50) < @)+ | ﬁr@—z)

z€lx,x] OT z€lz,z] O
d(z) d(z)

where [A]T = max{A4,0} and [A]” = min{4,0}.
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Mixed Monotone Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

@ Assume f : R — R is scalar:

Mean-value Inequality

s+ min I @0 < 50) < @)+ | ﬁr@—z)

z€lx,x] OT z€lz,z] O

~~

d(z,T) d(z,T)

where [A]T = max{A4,0} and [A]” = min{4,0}.

The effect of T on d(z, ) is competitive. J

The effect of T on d(z,T) is cooperative.
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Mixed Monotone Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

@ Assume f : R — R is scalar:

Mean-value Inequality

s+ min I @0 < 50) < @)+ | @r@—z)

z€lx,x] OT z€lz,z] O

~~

d(z,T) d(z,T)

where [A]T = max{A4,0} and [A]” = min{4,0}.

The effect of T on d(z, ) is competitive. J

The effect of T on d(z,T) is cooperative.

sign pattern of % separates cooperative and competitive effect of states.

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025
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Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

Jacobian-based: & = f(x,u) such that L € [J, o, Tjzz] and &L € [Jp,m, Tjum), then
et R e B R N ]

z— Ry — Ry ...~ R, — T, then the i-th column of M is min, g, wefuu %(z,w)

#SJ and A. Harapanahalli and S. Coogan, IEEE TAC, 2023
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Interval-based Reachability

A Jacobian-based decomposition function

How to compute a decomposition function for a system?J

Jacobian-based: & = f(x,u) such that L € [J, o, Tjzz] and &L € [Jp,m, Tjum), then

e zm) = [0 o]+ e el [+ 72 )

z— Ry — Ry ...~ R, — T, then the i-th column of M is min, g, wefuu %(z,w)

@ Interval analysis for computing Jacobian bounds.

@ Use tools and techniques from interval analysis. x

T Ry Rs
Ry

#SJ and A. Harapanahalli and S. Coogan, IEEE TAC, 2023
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Contraction Theory

Logarithmic norm and weak pairings

Differential condition J

Logarithmic norm
Given a matrix A € R™*" and a norm || - ||

| I + hA| -1
g(4):= lm ————
i (4) v h
@ Directional derivative of norm || - || in

direction of A,

MZ(A) = l/\maX(A -+ AT)
pi(A) = I (aj; + Z |a”
too(A) = max (aii + Z agj))

'A. Davydov, SJ, F. Bullo, Non-Euclidean contraction theory for robust nonlinear stability, 2022
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Contraction Theory
Logarithmic norm and weak pairings

Differential condition

|
v

Logarithmic norm

Given a matrix A € R™™" and a norm || - ||:

|In + RA| —1

Jg(4) = lim ———

H(4) = g, =
@ Directional derivative of norm || - || in

direction of A,
#2(14) = l/\maX(A -+ AT)
p1(A) = max (aj; + Z |a”
too(A) = max (aii + Z agj))

Integral condition

J

Weak pairing®3

Given a norm || - ||, the associated weak
pairing is [+, -] : R" x R" — R:

@ Subadditive and weakly homogeneity

@ Positive definite

@ Cauchy-Schwarz inequality

0 [z,a] = |||
[z,y], =y«
[2,y], = sign(y) "=

[[xv y]]oo = MaX;er (z) TilYi

Too(2) = {i | |2i] = [|]|oo }

LA, Davydov, SJ, F. Bullo, Non-Euclidean contraction theory for robust nonlinear stability, 2022

S. Jafarpour (CU Boulder)
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Contraction theory
Characterization for non-Euclidean norms

Theorem*
& = f(x,u) is contracting wrt || - | with rate c iff
Differential: p | (De f(w, 1)) < —c, for all z,u

Integral:  [f(z,u) — f(y,u),z —y] < —clle—yl%,  forall z,y,u

v

2 A. Davydov, S. Jafarpour, F. Bullo, TAC 2022
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Contraction theory
Characterization for non-Euclidean norms

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

f is a contracting vector field wrt to || - |2
iff
—f is a strongly monotone operator wrt to the inner product (-, -).
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Contraction theory
Characterization for non-Euclidean norms

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

f is a contracting vector field wrt to || - ||
iff
—f is a strongly monotone operator wrt to the weak pairing [, -].
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Generalized neural networks
Origin and motivations

@ Origins:
o Generalizing feedforward neural networks to fully-connected synaptic matrices

Intuition: 21! = ¢;(A;28 +b;) <= ®(Ax + Bu+b), where A has
upper diagonal structure.

Aupper-diagonal = complete -
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Generalized neural networks
Origin and motivations

@ comparable accuracy to traditional neural networks with significant memory reduction
Intuition: generalized neural network = weight-tied infinite-layer network

A
u——| T1 Ty | T3 — @ -y
L1 L L 1

27 = ¢ (Az' + Biw + b;)) = lim;_, 2* = x* solution to the
generalized neural network

@ suitable for learning constrained optimization problems

Intuition: casting KKT condition as an implicit layer )
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Generalized neural networks
Origin and Motivations

@ vanishing and exploding gradient

Intuition: the notion of “autapse” (time-delayed self-feedback) from neuroscience J

Aupper—diagonal = AAutapse =

@ suitable for learning stiff problems or problems with discontinuity

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 40 / 46



Generalized Structure
Comparison with feedforward neural networks

@ Feedforward neural networks: @ Generalized neural networks:
2D = (420 1+ 8y), 2O =2 z2=0(Az+ Bz +1b)
u= A,z"* + b, u=Cz+c
2= 3 z + x +b 2= 9 .z+|x+b
u= MWz b y — HEmEEN z +c

S. Jafarpour (CU Boulder) Mixed Monotone Reachability March 20, 2025 41 / 46



Training generalized neural networks

Promoting robustness via regularization

O loss function £ and training data (7;,u;)Y,

@ ¢ = size of f-perturbation in input: X =[x — €l,,x + €l,
z T
Training generalized neural networks Training FFNNs

N N
i ;, Czi - AL
Ar’%l’lg’c Zl L(u;,Cz; + ) AI’%I’II}’C Z L(w;,Cz"" +¢)
= i=1
z; = ®(Az; + Bu; +b), zf“l) _ @(Agzlw +b), Le{l,... k—1}
ay; + Z laij| <~  well-posedness
j=1 ) )
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Training generalized neural networks

Promoting robustness via regularization

O loss function £ and training data (7;,u;)Y,

@ ¢ = size of f-perturbation in input: X =[x — €l,,x + €l,

output u € [u(e),u(e)] J
Training generalized neural networks Training FFNNs (S. Gowal, et. al., 2018)
& N
min L(u;, Cz; + ¢) + kKR (u;(€), (e : o xR () 77
ABEe ; ( ) (u;(€), i (e)) AI:[];I,II)I,C Z:AC(ul,C’zZ + ¢) + KR (u;(€),u;(€))
robustness =1 T —
2 = ®(Az + Bu; +b), A0 Z 504,20 +8y), Le{l,... k-1
Qs Z la;j] < <1 well-posedness
j=1 y. y

@ R(u(e),u(e)) uses y(e) and u(e) to estimate robustness margin
® K, €,7 are hyperparameters
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Accuracy of Mixed Monotone Reachability

How accurate are hyper-rectangular over-approximations?

Monotone reachability is tight J
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Accuracy of Mixed Monotone Reachability

How accurate are hyper-rectangular over-approximations?

Monotone reachability is tight J

Overapproximation with w
2 -
~>
i T CC% —x1tw
dt || 31 g L X
—0.5( 0.5
= . . — O |
w=1[22,23 X H—Oé] ) [0.5” fuith w
-1 X | | | J
—1 0 1 2 3 4
X1
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Accuracy of Mixed Monotone Reachability

How accurate are hyper-rectangular over-approximations?

Monotone reachability is tight J

Overapproximation with w
2 -
[~>
d [a:l] [:c% -z + w]
dt |z x1 o I <
—-0.5 0.5
= |2. . = 0
W=022,23 % H—Oé] ’ [0.5” ith w
_1 X | | | | J
—1 0 1 2 3 4
xi
Question: how accurate is mixed monotone reachability? J
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Accuracy of Mixed Monotone Reachability

How accurate are hyper-rectangular over-approximations?

Monotone reachability is tight J

Overapproximation with w
2 | [~>
d [ml} [:c% -z + w]
dt |xo ) o I <
—0.5 (0.5
= |2. . = 0
W=[2,23 % H—Oé] ’ [0.5” ith w
X
_1 — | | | | |
—1 0 1 2 3 4
xi
Question: how accurate is mixed monotone reachability? J
Accuracy = the distance between trajectories of embedding system J

[i*gﬂ and {%Eg} traj of embedding system = provide bounds on ||z*(¢) — z(¢)|| and ||z*(¢) — Z(t)||
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Contraction Theory
A framework for stability analysis

Definition: Contracting systems

& = f(x,w) is contracting wrt || - || with rate ¢ if

|xw(t) — yuw(t)]| < eCtwa(O) — yw(0)]|, for allw e W, t>0.
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Contraction Theory
A framework for stability analysis

Definition: Contracting systems

& = f(x,w) is contracting wrt || - || with rate ¢ if

|xw(t) — yuw(t)]| < eCthw(O) — yw(0)]|, for allw e W, t>0.

Highly regular properties

@ existence of a globally stable equilibrium point

ct

o efficient equilibrium point computation

@ input-output robustness

@ entrainment to periodic orbits T ) ﬁ\ég ﬂt\” -
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Contraction Theory
A framework for stability analysis

Definition: Contracting systems

& = f(x,w) is contracting wrt || - || with rate ¢ if

|xw(t) — yuw(t)]| < eCthw(O) — yw(0)]|, for allw e W, t>0.

Highly regular properties
@ existence of a globally stable equilibrium point
o efficient equilibrium point computation

@ input-output robustness

2 A
@ entrainment to periodic orbits T ﬁ\ ol

ct

How to characterize contractivity using vector fields?

J

S. Jafarpour (CU Boulder) Mixed Monotone Reachability
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Contraction Theory and Matrix Measures

Definition and Characterization

Definition: Matrix measure

Given a matrix A € R"*™ and a norm || - [|: p2(A) = GAmax(A + AT)
1L, + hA| — 1 ui(4) = max (aj; + Z \aw
MH.”(A) = her —
h—0 too(A) = max a” + Z |a”
e directional derivative of matrix norm || - || in direction of A at point I,,.

W. Lohmiller and J. Slotine, On Contraction Analysis for Nonlinear Systems, 1998
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Contraction Theory and Matrix Measures

Definition and Characterization

Definition: Matrix measure

Given a matrix A € R"*™ and a norm || - [|: p2(A) = GAmax(A + AT)
1L, + hA| — 1 ui(4) = max (aj; + Z \aw
MH.”(A) = her —
h—0 too(A) = max a” + Z |a”
e directional derivative of matrix norm || - || in direction of A at point I,,.

@ In the literature: one-sided Lipschitz constant, logarithmic norm

W. Lohmiller and J. Slotine, On Contraction Analysis for Nonlinear Systems, 1998
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Contraction Theory and Matrix Measures

Definition and Characterization

Definition: Matrix measure

Given a matrix A € R"*™ and a norm || - [|: p2(A) = GAmax(A + AT)
1L, + hA| — 1 ui(4) = max (aj; + Z \aw
,uH.”(A) = her —
h—0 too(A) = max a” + Z |a”
e directional derivative of matrix norm || - || in direction of A at point I,,.

@ In the literature: one-sided Lipschitz constant, logarithmic norm

Theorem (Classical result)!®

& = f(x,w) is contracting wrt || - || with rate c iff

(L (@,w) <e,  forall z,w

W. Lohmiller and J. Slotine, On Contraction Analysis for Nonlinear Systems, 1998
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Embedding Systems

Contraction rate wrt ¢

16

Theorem

5J and S. Coogan, Monotoncity and contraction on polyhedral cones, 2024
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Embedding Systems

Contraction rate w

16

Theorem

z|  |F(z,7,w,w)| L ) )
[_] = [F(az 7w w)] = e(z,T,w,w) be the embedding system from the tight

decomposition function for & = f(z,w). For x € [z,T], w € [w, W]

oo (af(m w)) <c = i (%(Lf,wﬂ)) <c

hyper-rectangles evolve with /., contraction rate of original system J

5J and S. Coogan, Monotoncity and contraction on polyhedral cones, 2024
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Embedding Systems

Contraction rate wrt ¢

16

Theorem

Let % B] = [F(az, e w)] :=e(x,T,w,w) be the embedding system from the tight

decomposition function for & = f(z,w). For z € [z,Z], w € [w, W]

o (few)) s¢ = o (@mnw) <c

hyper-rectangles evolve with /., contraction rate of original system J

Gray = contraction tube
Red = Mixed Monotone hyper-rectangle

5J and S. Coogan, Monotoncity and contraction on polyhedral cones, 2024
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Embedding Systems

Contraction rate wrt £.,-norm

16

Theorem

4 |z| _ [Elz, 7w, w)| _ _ . .
Eet= L] = [F(az, 7w, w)] = e(z,T,w,w) be the embedding system from the tight

decomposition function for & = f(z,w). For z € [z,Z], w € [w, W]

T

fhoo (%ﬁ(m,w)) <c &= oo ((fi](w,a:,w,wo <c

hyper-rectangles evolve with /., contraction rate of original system J

Gray = contraction tube
Red = Mixed Monotone hyper-rectangle

L = max{||z*(0) — 2(0)||oo, [|£*(0) — Z(0)[| oo }

5J and S. Coogan, Monotoncity and contraction on polyhedral cones, 2024
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Embedding Systems

Contraction rate wrt ¢

16

Theorem

Let % B] = [F(az, e w)] :=e(x,T,w,w) be the embedding system from the tight

decomposition function for & = f(z,w). For z € [z,Z], w € [w, W]

fhoo (%ﬁ(fﬂ,w)) <c &= oo (8fe](w,a:,w,w)) <c

818

Idea of proof

connecting the order structure and metric structure of system J

Definition: Gauge norm

Given a pointed proper cone K, ||v||xg = inf{\A > 0| —A\1,, <g v =g Al,}

ls-norm is the gauge norm for the proper pointed cone R%.

5J and S. Coogan, Monotoncity and contraction on polyhedral cones, 2024
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