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Modern Autonomous Systems

Introduction

Power grids Delivery drones Autonomous Vehicles

@ large penetration of distributed renewable units in power grids
@ urban air mobility support operations including transfer of passengers and cargo

@ the increase in number of self-driving learning-enabled vehicles
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Modern Autonomous Systems

Introduction

Power grids Delivery drones Autonomous Vehicles

@ large penetration of distributed renewable units in power grids
@ urban air mobility support operations including transfer of passengers and cargo

@ the increase in number of self-driving learning-enabled vehicles

Autonomous systems in our societies are becoming more interconnected
and complex.
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Modern Autonomous Systems

Safety and Robustness guarantees

A critical task
Desired performance while ensuring their safety and robustness.

N

2011 US Southwest blackout Postal Drone hit the building Self-driving car accident
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Modern Autonomous Systems
Safety and Robustness guarantees
A critical task
Desired performance while ensuring their safety and robustness.

2011 US Southwest blackout

My Research

Provide guarantees for safety and robustness of autonomous systems

Tools: Systems and Control (contraction theory, monotone system theory)
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Learning-enabled Autonomous Systems

Motivations and Applications

In this talk: Autonomous Systems with Learning-based components J
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Learning-enabled Autonomous Systems

Motivations and Applications

In this talk: Autonomous Systems with Learning-based components J

@ Learning-based controllers or motion planners in safety-critical applications

@ Main reasons: computationally burdensome, executed by an expert, complicated
representation.

Self driving vehicles: ) Robotic motion planning:) Collision avoidance: [
ACAS Xu Command
Recorded
slearing oo
wheel engle | pfust o shit Desired stasring command
| and rotaton -
Ketenrk ;
Lot camara computed
JF : —dmng Y.
Canlor camera | »mﬂ - o Bzl
meé- i
Backpopegtion |, ETr | R e ]
waigH austmact ' X Pasttion ()
M. Bojarski, et al., NeurlPS, 2016. M. Everett, et. al., IROS, 2018. K. Julian, et. al., DASC, 2016.
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Learning-enabled Autonomous Systems

Safety verification and training

disturbance |—’ ,
Goal: ensure safety of the closed-loop system J ]

System

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Learning-enabled Autonomous Systems

Safety verification and training

disturbance |—. ,..
—

Goal: ensure safety of the closed-loop system J

Issues with learning algorithms: BB o
@ large # of parameters with nonlinearity
@ sensitive wrt to input perturbations! 22l .o

®—
@ no safety guarantee in their training -

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Learning-enabled Autonomous Systems

Safety verification and training

disturbance |—’ ,.b
Goal: ensure safety of the closed-loop system J =

System

=%

Issues with learning algorithms: @ s
@ large # of parameters with nonlinearity —
@ sensitive wrt to input perturbations! . H s
@ no safety guarantee in their training - —

@ | Verification: how safe is the closed-loop system?‘

@ Training: how to design the learning component to ensure safety?

1C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014
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Example: Safety in Mobile Robots
Learning-enabled controllers
Perception-based Obstacle Avoidance

4

=
&)

System

i=fuw)| y

y = h(z)
Camera Images ‘f = f(x, u, w)

Learning-based obstacle detection

Disturbance

Learning-based obstacle detection

trained offline using images

Actuator

Goal
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Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

4

Disturbance System

i=fuw)| y

y = h(z) —J

Learning-based obstacle detection

Actuator

Canmera Images i = f(z,u,w) trained offline using images

% v y = h(z)

Learning-based obstacle detection

2)

No guarantee to avoid the obstacle:
@ out of distribution images

@ changes in the environment
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Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

4

=
&)

System

Disturbance

i=fuw)| y

y = h(z) ___j
F |

Learning-based obstacle detection

Learning-based obstacle detection

trained offline using images

Camera Images T

(x,u,w)

Actuator

I
> =

<
Il

2)

Goal

September 11, 2024
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Outline of this talk

o Reachability Analysis

o Mixed Monotone Theory

o Neural Network Controlled Systems
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/
T -
)3162' (T LS T Reachable set
-— St gy
F i i
Initial set Initial set

What are the possible states of the system at time 7177 J
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Reachability Analysis of Systems
Problem Statement

System : & = f(z,w) State: z € R" Uncertainty : w € W C R™

State space State space
x(T)
x(T)
/

x (T e v

)31‘2. 1(T) e T Reachable set
o—
s LUVt
Initial set Initial set

What are the possible states of the system at time 7177 J

@ T-reachable sets characterize evolution of the system

Rf(T, X, W) = {2w(T) | () is a traj for some w(-) € W with zg € Ap} J
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Reachability Analysis of Systems

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J
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Reachability Analysis of Systems

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

State sp‘a"ce Target
Unsafe ‘

T Reachable set T Reachable set

Initial set Initial set o B
R¢(T, Xo,W) N Unsafe set = () ) R §(Thinal, Xo, W) C Target set )
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Reachability Analysis of Systems
Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets J

@ Example: Reach-avoid problem

Unsafe

T Reachable set

EAEAN Y
Initial set

R¢(T, Xo,W) N Unsafe set = () J

State spéce Target

T Reachable set

“:\:‘ r
Initial set

R (Thnal, Xo, W) C Target set |

Combining different instantiation of Reach-avoid problem —
diverse range of specifications
(complex planning using logics, invariance, stability)

S. Jafarpour (CU Boulder) Interval Reachability of Learning-enabled Systems September 11, 2024 9/35



Reachability Analysis of Systems

Applications

Autonomous Driving: Power grids:

Gourdes
[

Agnareed

v > Prwar Brsman -~ = === R o
\ Dtatance [ /
. 3 x
i ,/‘\ )
Pows Bpsom === = = = ‘,k/ A
Althoff, 2014 Chen and Dominguez-Garcia, 2016
Robot-assisted Surgery: Drug Delivery:
e, Samn | ||,,;,,,,, Glt) [T MY
Punp | Patieat [
Gt
% uwit) (G ;
- u'y/ Algpeithm ]

Chen, Dutta, and Sankaranarayanan, 2017
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging )
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging )

Solution: over-approximations and under-approximation of reachable sets J
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Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging )

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J

S. Jafarpour (CU Boulder) Interval Reachability of Learning-enabled Systems September 11, 2024 11 /35



Reachability Analysis of Systems
Why is it difficult?

Computing the T-reachable sets are computationally challenging J

Solution: over-approximations and under-approximation of reachable sets J

o for safety verification = over-approximations

Over-approximation: R ¢(T, Xo, W) C R¢(T, Xo, W) J

Unsafe

Init

R¢(T, Xy, W) N Unsafe set = 0

State space Target

Overapproximation

~ T Reachable set

itial set

R ¢ (Thnal, Xo, W) C Target set

S. Jafarpour (CU Boulder)
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Run-time Reachability

Definition and Motivations

In many autonomous systems safety cannot be completely ensured at the
design level?. J

2Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Run-time Reachability

Definition and Motivations

In many autonomous systems safety cannot be completely ensured at the
design level?. J

Reasons:
@ Impossible to completely characterize behavior of the system (human-in-the-loop)
@ Lead to conservative design (stochastic environments)

e Simpler design with computationally efficiency (learning-based controllers)

2Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Run-time Reachability
Definition and Motivations

In many autonomous systems safety cannot be completely ensured at the
design level?. J

Reasons:
@ Impossible to completely characterize behavior of the system (human-in-the-loop)
@ Lead to conservative design (stochastic environments)

e Simpler design with computationally efficiency (learning-based controllers)

Run-time reachability: In these applications, we need to compute
reachable sets in run-time to verify safety of the system J

2Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous
Systems, 2018
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980
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Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Bisimulations
@ Linear, and piecewise linear systems (Ellipsoidal methods)

@ Polynomial systems (Sum of Square)
e Optimization-based approaches (Hamilton-Jacobi, Level-set method)
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets
@ Bisimulations
@ Linear, and piecewise linear systems (Ellipsoidal methods)
@ Polynomial systems (Sum of Square)
e Optimization-based approaches (Hamilton-Jacobi, Level-set method)

The classical and general approaches are computationally heavy and are not
suitable for run-time reachability. J
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Reachability Analysis of Systems
Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

@ Bisimulations

@ Linear, and piecewise linear systems (Ellipsoidal methods)

@ Polynomial systems (Sum of Square)

e Optimization-based approaches (Hamilton-Jacobi, Level-set method)

The classical and general approaches are computationally heavy and are not
suitable for run-time reachability. J

In this talk: a mathematically rigorous and computationally
efficient approach for run-time reachability J
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Outline of this talk

o Reachability Analysis

o Mixed Monotone Theory

o Neural Network Controlled Systems
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if
24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if

24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

Monotonicity test State Space Ordered
8f . . Trajectories
Q 5. (v, w) is Metzler (off-diag > 0)

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
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Interval Reachability of Learning-enabled Systems

September 11, 2024



Monotone Dynamical Systems

Definition and Characterization

A dynamical system @ = f(z,w) is monotone3if

24(0) <yp(0) and u<w =  x4(t) <yu(t) for all time

where < is the component-wise partial order.

Monotonicity test State Space Ordered
8f . . Trajectories
Q 5. (v, w) is Metzler (off-diag > 0)

In this talk: monotone system theory for reachability analysis

)

3Angeli and Sontag, “Monotone control systems”, IEEE TAC, 2003
S. Jafarpour (CU Boulder)
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Reachability of Monotone Dynamical Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

R (t, [2o, To]) C [2w(t), zw(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)
starting at x (resp. To)
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Reachability of Monotone Dynamical Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]
Rf(t7 [107E0]) - [xﬂ(t)ﬂ xﬁ(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)
starting at x (resp. To)

Overapproximation with w
Example: 2rF I
d [z] _ [23 -2 4w o 1 -
dt |x2]| 1 5 T
-0.5] [05 or -
= = with w
W [22 ) 23] XO |:|:_05:| ) |:05:|:| ] x | | | | ‘

September 11, 2024 16 / 35
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Non-monotone Dynamical Systems

Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets
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Non-monotone Dynamical Systems
Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets

Example: ’
d [o] _ [23—a2+w i
dt || 1 d
S 1
—0.5| (0.5
W=1[22,23] &= H_o_5] ’ [0.5” 0
—1

Not Overapproximation

L [~~~

=I
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Mixed Monotone Theory

Embedding into a higher dimensional system

o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"
o Assume W = [w, W] and Xy = [z, To]

&= f(z,w) ) Q f(z,w)=d(x,z,w,w) for every z,w

© cooperative: (z,w) — d(z, T, w,w
Embedding system P (z,w) — d(z )

© competitive: (Z,w) — d(z,T,w, W)

d, d are decomposition functions s.t.

7 = d(z, T, w, T) Q the same properties for d

A

S. Jafarpour (CU Boulder)

Interval Reachability of Learning-enabled Systems

September 11, 2024 18 / 35



Mixed Monotone Theory

Embedding into a higher dimensional system
o Key idea: embed the dynamical system on R"™ into a dynamical system on R2n
o Assume W = [w, W] and Xy = [z, To]

Original system d, d are decomposition functions s.t.
&= f(z,w) ) Q f(z,w)=d(x,z,w,w) for every z,w

© cooperative: (z,w) — d(z,Z, w,w
Embedding system P (2, w) = d(z )

© competitive: (Z,w) — d(z,T,w, W)

i = d(&;fa wa w)) _
© the same properties for d

zZ=d(z,T,w, W)

V.

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

z Yy PR
~ < e — < <
[az] SSE [y] z<y and y<Z

S. Jafarpour (CU Boulder)
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Mixed Monotone Theory

Versatility and History

o f locally Lipschitz = a decomposition function exists

The best (tightest) decomposition function is given by

d@(zafawaw) = rI}lIl fi(zau)7 C_lz(£7§7w7m) = H}&X _ fi(Z,U)
z2€[z,7],2;=2; 2€[z,7],2;=7;
u€ [w,w] u€[w,w]
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Mixed Monotone Theory
Versatility and History

o f locally Lipschitz = a decomposition function exists

The best (tightest) decomposition function is given by

d@(zafawaw) = mln fi(zau)7 C_lz(£7§7w7m) = H}&X _ fi(Z,U)
z2€[z,7],2;=2; 2€[z,7],2;=7;
u€ [w,w] u€[w,w]

A short (and incomplete) history:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J
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Embedding System for Linear Dynamical System

A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 —1
@ Example: A=|1 -3 0| = (A" =11 -3 0 [AMZA = {0 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
& = Ax + Bw ..@

Embedding system

Z: [A—‘MZIQ'F LAJMZIE_FB—&—M_I_B—E
z=[AM7Z + |AMz + B*w+ B w

September 11, 2024 20 / 35
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Reachability using Embedding Systems

Hyper-rectangular over-approximations

Theorem*

(%)
Assume W = [w,w] and Xy = [z, To] and /r)
i = C_l(ga Ea w, E)v E(O) = 20 g \\
T =d(7, 2,7, w), z(0) = To =)
Reacha‘ble set
Then R(t, Xy) C [z(t),T(t)] Lo
v

*Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Reachability using Embedding Systems

Hyper-rectangular over-approximations

"
Assume W = [w,w] and Xy = [z, To] and ﬂj
x = C_l(ga Ea w, E)v l(o) = Zy L) \
T =d(7, 2,7, w), z(0) = To =)
Reacha‘ble set
Then R(t, Xy) C [z(t),T(t)] Lo
v

(Scalable) a single trajectory of embedding system provides lower bound
(z) and upper bound (T) for the trajectories of the original system. J

*Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Reachability using Embedding Systems
Example

Original System:

a [z] _ [#d—ze+w
dt | po| x1

—0.5] [0.5
W=[22,23] X= H_Og] ’ [0.5”

blue = cooperative, red = competitive

Decomposition function
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Reachability using Embedding Systems
Example
Embedding System:

Original System:
(23 — T +w

d |T1| _ ;173—372 =+ w x4
dt | gpo| xq FRE 4 [w} B [2.2]
d |z | = |z ol I P
—0.5 0.5 I Ty — Lo +w w 2.3
W = [2.2 , 2.3] Xy = |:|:_0‘5:| s |:O.5:|:| To L 1
_ N z,(0)] _ [-0.5 z1(0)] 0.5
blue = cooperative, red = competitive 25(0)| —0.5 72(0)| — 0.5
Decomposition function
~F]
3 o f
_ _ RY (1, Xp)
derww = [P0+ |72
T 0
== 2]

22 /35

September 11, 2024

Interval Reachability of Learning-enabled Systems

S. Jafarpour (CU Boulder)



Outline of this talk

o Reachability Analysis
o Mixed Monotone Theory

o Neural Network Controlled Systems
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system

&= f(z,N(z),w) = f(z,w)
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

disturbance w e W —T

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system

&= f(z,N(z),w) = f(z,w)

u = N(x) is k-layer feed-forward neural net

PO (W D=1 () 4 pE=1)y
=69 u=w®e®(g) 4 p®) .= N(2),

I
=
—
8
SN—
I

4
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Systems with Neural Network Controllers
Safety Verification

Given the open-loop nonlinear system with a
neural network controller

disturbance w e W —T

:t = f(x?u7w)7
u= N(x),

study reachability of the closed-loop system
Challenge: directly performing

z = f(z,N(z),w) := f(z,w) reachability on f¢ is complicated

N(x) is high dimensional and has a large

u = N(x) is k-layer feed-forward neural net 4 of parameters

PO (W D=1 () 4 pE=1)y
=69 u=w®e®(g) 4 p®) .= N(2),

I
=
—
8
SN—
I

4
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a
parameter J
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a
parameter J

Neural network verification algorithm for bounds on u J
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a } Sjg(stem )
x=f(xu,w
parameter J € X
disturbance w e W
. . - [
Neural network verification algorithm for bounds on u J %

System
F=f(xuw)

x€ X

Reachability of open-loop system + Neural network
verification bounds J

disturbance w e W
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Systems with Neural Network Controllers
A Compositional Approach

Reachability of open-loop system treating u as a } Sjg(stem )
X =f(x,u,w
parameter J € X
disturbance w e W
. . - [
Neural network verification algorithm for bounds on u J %

Reachability of open-loop system + Neural network

verification bounds J ﬁ % }~

disturbance w € W

System
S =fruw)
xg X

If not carefully implemented, it can lead to overly-conservative results
In this talk: how to suitably define this composition J
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Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: & = f(x,u) such that 5 €z s J[w7) and %5 € u[uﬂ}’j[uﬂﬂ' then

iezenl - Lo ol {‘“W@ genr) ]+ [

» Ty U,
z,u,

C\ @\

®Harapanabhalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to
Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
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Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: & = f(z,u) such that 5 €z s J[w7) and %5 € u[uﬂ}’j[uﬂﬂ' then
[g(x z,u, u)] _ [—[J[m,x]]_ [J[ﬂfvz}]_:| [:v] N |:_[‘][u,wﬂ [J[u,u}]:| U] [f(z,_)]
d(z,T,u, ) ~[Jezlt Uezl™] 1= ~Twal™ Vwal™] 17 [flzu)

@ Interval arithmetic allows computing Jacobian
bounds efficiently.

®Harapanabhalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to

Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
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Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: & = f(x,u) such that 5 €z s J[w7) and %5 € u[uﬂ}’j[uﬂﬂ' then
[g(x z,u, u)] [ [Ljoz]” [J[ﬂfvz}]_:| [:v] N |:_[‘][u,wﬂ [J[u;u}]:| u] N [f(z, @)]
d(z,T,u, u) Veal™ Ueal] 12 | -Vwalt Uwaltl 7@ [flzw)

@ Interval arithmetic allows computing Jacobian

bounds efficiently. - -
@ npinterval®: Toolbox that implements intervals ] et ] S
as native data-type in numpy. glorw) = [(a1 +x2)? sin((n —x2) /4]

Vs,

8(x1,x2) =
[x% +2x1xp +x%‘4sin(x1 /4) cos(x; /4) —4cos(xy /4) sin(xy /4)]T

®Harapanabhalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to
Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
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Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

U 7] < N(z) < Upgz, forallze [z, T]

5Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.

S. Jafarpour (CU Boulder) Interval Reachability of Learning-enabled Systems September 11, 2024 27 /35



Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

Uz < N(@) STz, forallz € [z,7]

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

GZhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Interval Bounds for Neural Networks
Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N (x)

Upz) S N(@) STz, forallz € [2,7]

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

@ Bounding the value of each neurons

@ Linear upper and lower bounds on the
activation function

5Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

P = vcos(é + B(uz))
py = vsin(¢ + B(uz))

B(uz) = arctan ( d

I+ tan(u2)>

= %sin(ﬂ(uz))

1')=u1

r

Pz

(~8,8)

(8.8)

September 11, 2024

(8,-8)

28 / 35
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Case Study: Bicycle Model
A naive compositional approach

Dynamics of bicycle

P = vcos(é + B(uz))
py = vsin(¢ + B(uz))

B(uz) = arctan ( d

I+ tan(u2)>

= %Sin(ﬂ(uﬂ)

1')=u1

r

(~8,8)

(8.8)

Goal: steer the bicycle to the origin avoiding the obstacles J
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Case Study: Bicycle Model
A naive compositional approach

(=8,8) (8,8)

Dynamics of bicycle

e =veos(é+ Blug)) = %Sm(ﬂ(uz))

Py =vsin(¢+ B(uz))  v=u

B(uz) = arctan (lf :7; . tan(u2)>

(~8,-8) (8,-8)

Goal: steer the bicycle to the origin avoiding the obstacles J

@ train a feedforward neural network 4 — 100 — 100 — 2 using data from model predictive
control
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0,0)

o Ay = [Qo,fo] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Embedding system:

u < N(z) <, for every z € [z,T].

September 11, 2024 29 / 35
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

@ start from (8,8) toward (0,0)
o Ay = [QO,T()] with

2y = (7.95 7.95 —T—001 1.99)"
To= (805 805 —Z+001 201)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

Euler integration with step h:

Dy 44 //' Dy 44 J
Zy :£O+hd(£07507ﬂ07ﬂ07w7w) ] 51
T1 = To + hd(g()’TOvﬂOaﬂOaw’ w) o] 0
_ _ 0 2 4 6 8 0 2 4 6 8
uy < N(z) <y, for every x € [z, To). Pa Pz
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
V.
8 \\ 84 a
Euler integration with step h: °1 ET«H °1 ]
- 1
Dya / Dy d
— — — /
Zo = z7 + hd(z1,T1, Uy, U1, w, W) ’
24 2
Ty = T1 + hd(z1, 71, Uy, U1, W, V)
0 0
_ _ 0 2 4 6 8 0 2 4 6 8
u; < N(x) <y, for every x € [z,,71]. Pa Da
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Reachability of Closed-loop System
Case Study: Bicycle Model

(8.8)

e start from (8, 8) toward (0, 0)

o Ay = [QO,T()] with
2y = (7.95 7.95 —T—001 1.99)"
To = (8.05 805 —I+001 201)"

o = start

o = destination

(8,-8)
@ CROWN for verification of neural network
£
8 < 8 a
\
. . : \
Euler integration with step h: ° ! ° ;
Dy = Dys .
[— — PR— 7/ 7
L3 = Lo A hC_i(£2, T2, Uy, U2, W, w) , 'éff""}’ s
T3 :TQ +hd(£27527ﬂ27ﬂ2aw7w) o o
o _ 6 i 4‘! 6 8 6 2 4 6 8
uy < N(x) < Uy, for every x € [z4,Ta). Pa Pa
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Reachability of Closed-loop System

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J
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Reachability of Closed-loop System

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example
T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.
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Reachability of Closed-loop System

Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Naive interconnection approach Interaction approach

First find the bounds u < Kz < @, then First replace u = Kx in the system, then

(1-K)z+w
(1-K)T+w

8- 1R

This system is unstable.

This system is stable.
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Reachability of Closed-loop System
Issues with the compositional approach

Neural network controller as disturbances (worst-case scenario)
It does not capture the stabilizing effect of the neural network. J

An illustrative example

T = x + u + w with controller u = — Kz, for some unknown 1 < K < 3.

Naive interconnection approach Interaction approach

First find the bounds u < Kz < @, then First replace u = Kx in the system, then

t=(01-Kz+uw
z=(1-K)T+w

This system is unstable.

This system is stable.

We need to know the functional dependencies of neural network bounds J

S. Jafarpour (CU Boulder)
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Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (x)

Ny () < N(z) < N[LE] (), forall z € [z,T]

7Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Functional Bounds for Neural Networks
Function Approximation

Functional bounds: Given a neural network controller u = N (x)

Ny () < N(z) < N[LE] (), forall z € [z,T]

@ Example: CROWNcan provide functional bounds.

CROWN functional bounds: CROWN input-output bounds:
_ — At oA
Nigz)(2) = A )% + bl 2, Upz) = Ap 7T + Apg + bea),
W) = A+ Pz o) = AT + Ap 2 + bppz

"Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Interaction Approach
A pictorial explanation

Original system: Embedding system:

_.[55: flz, N(z ]_. —{B- 2 1 ek el o

closed-loop embedding system

closed-loop system

How does the interaction approach work?

@ Closed-loop decomposition function = Jacobian based for f(z, N(x),w).
@ Neural Network affine functional bounds

Nz = é[&@]x + 0 7

Nigg = Apz2 + bz

are used to compute the interactions.
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Systems with NN Controllers
Interaction Approach
_ 5 _ _
= —fj Jruz) Jus + € [Jjwm]> J[ww)]- Then
]+

d; (2,7, w, @
Ezc(gv z,w, @) [H]+ - J[:Jc,x] T
where
H = l[m,z] + [J[u,ﬂ]]JrA[Lx] + [‘][u u}]iz[x,z]
H=Jpz + pal Az + gl Az
is a decomposition function for the closed-loop system. )

8 Jafarpour, Harapanahalli, Coogan. “Efficient Interaction-aware Interval Reachability of Neural Network

Feedback Loops”, arXiv, 2003
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Case Study: Bicycle Model

Numerical Experiments

e start from (8,7) toward (0,0)

o Xy = [z, To] with
zy=(7.95 6.95 —2—0.01 1.99)"
To= (805 7.05 —2T4+0.01 2.01)"

o = start

o = destination

(8,-8)

@ CROWN for verification of neural network

.

81 runtime: 0.028 + 0.003 81 runtime: 0.047 + 0.002
6 6
py4 4
2 2
0 0

00 25 50 75 00 25 50 75
Px Px
Naive interconnection approach interaction approach
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Conclusions
and follow-up work

Reachability as a framework for safety certification

Mixed monotone theory as a computationally efficient method for reachability

Reachability of neural network controlled systems

Capture the interaction between system and neural network controller

Follow-up work: Forward invariance (safety guarantees for infinite time)

Harapanahalli, Jafarpour, and Coogan. Forward Invariance in Neural Network Controlled
Systems. arXiv, Sep 2023 J
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