Reachability Analysis of Control Systems:

A Mixed Monotone Approach

Saber Jafarpour

September 11, 2024

Introduction

Power grids

Delivery drones

Autonomous Vehicles

- large penetration of distributed renewable units in power grids
- urban air mobility support operations including transfer of passengers and cargo
- the increase in number of self-driving learning-enabled vehicles

Introduction

Power grids

Delivery drones

Autonomous Vehicles

- large penetration of distributed renewable units in power grids
- urban air mobility support operations including transfer of passengers and cargo
- the increase in number of self-driving learning-enabled vehicles

Autonomous systems in our societies are becoming more **interconnected** and **complex**.

Safety and Robustness guarantees

A critical task

Desired performance while ensuring their safety and robustness.

2011 US Southwest blackout

Postal Drone hit the building

Self-driving car accident

Safety and Robustness guarantees

A critical task

Desired performance while ensuring their safety and robustness.

Postal Drone hit the building

Self-driving car accident

My Research

Provide guarantees for safety and robustness of autonomous systems

Tools: Systems and Control (contraction theory, monotone system theory)

Motivations and Applications

In this talk: Autonomous Systems with Learning-based components

Motivations and Applications

In this talk: Autonomous Systems with Learning-based components

Learning-based controllers or motion planners in safety-critical applications

Motivations and Applications

In this talk: Autonomous Systems with Learning-based components

- Learning-based controllers or motion planners in safety-critical applications
- Main reasons: computationally burdensome, executed by an expert, complicated representation.

Self driving vehicles: Recorded steering wheel angle Adjust for shat and rotation Last camera Rendom shift and rotation Right camera Basik propagation weight adjustment weight w

Collision avoidance:

ACAS Xu Command

1000

- Sheep Left Service Serv

M. Everett, et. al., IROS, 2018.

K. Julian, et. al., DASC, 2016.

M. Bojarski, et al., NeurIPS, 2016.

Safety verification and training

Goal: ensure *safety* of the closed-loop system

¹C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014

Safety verification and training

Goal: ensure *safety* of the closed-loop system

Issues with learning algorithms:

- large # of parameters with nonlinearity
- sensitive wrt to input perturbations¹
- no safety guarantee in their training

¹C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014

Safety verification and training

Goal: ensure *safety* of the closed-loop system

Issues with learning algorithms:

- large # of parameters with nonlinearity
- sensitive wrt to input perturbations¹
- no safety guarantee in their training

- **1** Verification: how safe is the closed-loop system?
- **2** Training: how to design the learning component to ensure safety?

¹C. Szegedy et. al. Intriguing properties of neural networks. In ICLR, 2014

Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

Learning-based obstacle detection

trained offline using images

Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

$$\dot{x} = f(x, u, w)$$
$$y = h(x)$$

Learning-based obstacle detection

trained offline using images

No guarantee to avoid the obstacle:

- out of distribution images
- changes in the environment

Example: Safety in Mobile Robots

Learning-enabled controllers

Perception-based Obstacle Avoidance

$$\dot{x} = f(x, u, w)$$
$$y = h(x)$$

Learning-based obstacle detection

trained offline using images

Goal

Outline of this talk

Reachability Analysis

Mixed Monotone Theory

Neural Network Controlled Systems

$$System: \dot{x} = f(x, w)$$

 $\mathsf{State}: x \in \mathbb{R}^n$

Uncertainty : $w \in \mathcal{W} \subseteq \mathbb{R}^m$

What are the possible states of the system at time T?

$$System: \dot{x} = f(x, w)$$

State : $x \in \mathbb{R}^n$

Uncertainty : $w \in \mathcal{W} \subseteq \mathbb{R}^m$

What are the possible states of the system at time T?

• T-reachable sets characterize evolution of the system

$$\mathcal{R}_f(T, \mathcal{X}_0, \mathcal{W}) = \{x_w(T) \mid x_w(\cdot) \text{ is a traj for some } w(\cdot) \in \mathcal{W} \text{ with } x_0 \in \mathcal{X}_0\}$$

Safety verification via T-reachable sets

A large number of ${\bf safety}$ ${\bf specifications}$ can be represented using T-reachable sets

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets

• Example: Reach-avoid problem

$$\mathcal{R}_f(T,\mathcal{X}_0,\mathcal{W}) \cap \text{ Unsafe set } = \emptyset$$

$$\mathcal{R}_f(T_{\mathrm{final}}, \mathcal{X}_0, \mathcal{W}) \subseteq \mathsf{Target}$$
 set

Safety verification via T-reachable sets

A large number of safety specifications can be represented using T-reachable sets

• Example: Reach-avoid problem

$$\mathcal{R}_f(T,\mathcal{X}_0,\mathcal{W})\cap \ \mathsf{Unsafe\ set}\ =\ \emptyset$$

$$\mathcal{R}_f(T_{\mathrm{final}}, \mathcal{X}_0, \mathcal{W}) \subseteq \mathsf{Target}$$
 set

Combining different instantiation of Reach-avoid problem \Longrightarrow diverse range of specifications (complex planning using logics, invariance, stability)

Applications

Autonomous Driving:

Althoff, 2014

Robot-assisted Surgery:

Power grids:

Chen and Dominguez-Garcia, 2016

Drug Delivery:

Chen, Dutta, and Sankaranarayanan, 2017

Why is it difficult?

Computing the T-reachable sets are computationally challenging

Why is it difficult?

Computing the T-reachable sets are computationally challenging

Solution: over-approximations and under-approximation of reachable sets

Why is it difficult?

Computing the T-reachable sets are computationally challenging

Solution: over-approximations and under-approximation of reachable sets

ullet for safety verification \Longrightarrow over-approximations

Over-approximation: $\mathcal{R}_f(T, \mathcal{X}_0, \mathcal{W}) \subseteq \overline{\mathcal{R}}_f(T, \mathcal{X}_0, \mathcal{W})$

Why is it difficult?

Computing the T-reachable sets are computationally challenging

Solution: over-approximations and under-approximation of reachable sets

ullet for safety verification \Longrightarrow over-approximations

Over-approximation: $\mathcal{R}_f(T, \mathcal{X}_0, \mathcal{W}) \subseteq \overline{\mathcal{R}}_f(T, \mathcal{X}_0, \mathcal{W})$

$$\overline{\mathcal{R}}_f(T,\mathcal{X}_0,\mathcal{W}) \cap \mathsf{Unsafe} \; \mathsf{set} = \emptyset$$

$$\overline{\mathcal{R}}_f(T_{\mathrm{final}}, \mathcal{X}_0, \mathcal{W}) \subseteq \mathsf{Target} \ \mathsf{set}$$

Run-time Reachability

Definition and Motivations

In many autonomous systems safety cannot be **completely ensured** at the design level².

²Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous Systems, 2018

Run-time Reachability

Definition and Motivations

In many autonomous systems safety cannot be **completely ensured** at the design level².

Reasons:

- Impossible to completely characterize behavior of the system (human-in-the-loop)
- Lead to conservative design (stochastic environments)
- Simpler design with computationally efficiency (learning-based controllers)

²Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous Systems. 2018

Run-time Reachability

Definition and Motivations

In many autonomous systems safety cannot be **completely ensured** at the design level².

Reasons:

- Impossible to completely characterize behavior of the system (human-in-the-loop)
- Lead to conservative design (stochastic environments)
- Simpler design with computationally efficiency (learning-based controllers)

Run-time reachability: In these applications, we need to compute reachable sets in run-time to verify safety of the system

²Institute for Defense Analysis, The Status of Test, Evaluation, Verification, and Validation of Autonomous Systems, 2018

Literature review

Reachability of dynamical system is an old problem: $\sim 1980\,$

Literature review

Reachability of dynamical system is an old problem: $\sim 1980\,$

Different approaches for approximating reachable sets

- Bisimulations
- Linear, and piecewise linear systems (Ellipsoidal methods)
- Polynomial systems (Sum of Square)
- Optimization-based approaches (Hamilton-Jacobi, Level-set method)

Literature review

Reachability of dynamical system is an old problem: $\sim 1980\,$

Different approaches for approximating reachable sets

- Bisimulations
- Linear, and piecewise linear systems (Ellipsoidal methods)
- Polynomial systems (Sum of Square)
- Optimization-based approaches (Hamilton-Jacobi, Level-set method)

The classical and general approaches are computationally heavy and are not suitable for run-time reachability.

Literature review

Reachability of dynamical system is an old problem: ~ 1980

Different approaches for approximating reachable sets

- Bisimulations
- Linear, and piecewise linear systems (Ellipsoidal methods)
- Polynomial systems (Sum of Square)
- Optimization-based approaches (Hamilton-Jacobi, Level-set method)

The classical and general approaches are computationally heavy and are not suitable for run-time reachability.

In this talk: a mathematically rigorous and computationally efficient approach for run-time reachability

Outline of this talk

Reachability Analysis

Mixed Monotone Theory

Neural Network Controlled Systems

Monotone Dynamical Systems

Definition and Characterization

A dynamical system $\dot{x} = f(x, w)$ is monotone³if

$$x_u(0) \le y_w(0)$$
 and $u \le w \implies x_u(t) \le y_w(t)$ for all time

where \leq is the component-wise partial order.

³Angeli and Sontag, "Monotone control systems", IEEE TAC, 2003

Monotone Dynamical Systems

Definition and Characterization

A dynamical system $\dot{x} = f(x, w)$ is monotone³ if

$$x_u(0) \le y_w(0)$$
 and $u \le w \implies x_u(t) \le y_w(t)$ for all time

where \leq is the component-wise partial order.

Monotonicity test

³Angeli and Sontag, "Monotone control systems", IEEE TAC, 2003

Monotone Dynamical Systems

Definition and Characterization

A dynamical system $\dot{x} = f(x, w)$ is monotone³ if

$$x_u(0) \le y_w(0)$$
 and $u \le w \implies x_u(t) \le y_w(t)$ for all time

where \leq is the component-wise partial order.

Monotonicity test

- $\frac{\partial f}{\partial w}(x,w) \ge 0$

In this talk: monotone system theory for reachability analysis

³Angeli and Sontag, "Monotone control systems", IEEE TAC, 2003

Reachability of Monotone Dynamical Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with $\mathcal{W} = [\underline{w}, \overline{w}]$

$$\mathcal{R}_f(t, [\underline{x}_0, \overline{x}_0]) \subseteq [x_{\underline{w}}(t), x_{\overline{w}}(t)]$$

where $x_{\underline{w}}(\cdot)$ (resp. $x_{\overline{w}}(\cdot)$) is the trajectory with disturbance \underline{w} (resp. \overline{w}) starting at \underline{x}_0 (resp. \overline{x}_0)

Reachability of Monotone Dynamical Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with $\mathcal{W} = [\underline{w}, \overline{w}]$

$$\mathcal{R}_f(t, [\underline{x}_0, \overline{x}_0]) \subseteq [x_{\underline{w}}(t), x_{\overline{w}}(t)]$$

where $x_{\underline{w}}(\cdot)$ (resp. $x_{\overline{w}}(\cdot)$) is the trajectory with disturbance \underline{w} (resp. \overline{w}) starting at \underline{x}_0 (resp. \overline{x}_0)

Example:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2^3 - x_1 + w \\ x_1 \end{bmatrix}$$

$$\mathcal{W} = \begin{bmatrix} 2.2, 2.3 \end{bmatrix} \quad \mathcal{X}_0 = \begin{bmatrix} \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \end{bmatrix}$$

Non-monotone Dynamical Systems

Reachability analysis

 For non-monotone dynamical systems the extreme trajectories do not provide any over-approximation of reachable sets

Non-monotone Dynamical Systems

Reachability analysis

• For non-monotone dynamical systems the extreme trajectories do not provide any over-approximation of reachable sets

Example:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2^3 - x_2 + w \\ x_1 \end{bmatrix}$$

$$\mathcal{W} = \begin{bmatrix} 2.2, 2.3 \end{bmatrix} \quad \mathcal{X}_0 = \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Embedding into a higher dimensional system

- Key idea: embed the dynamical system on \mathbb{R}^n into a dynamical system on \mathbb{R}^{2n}
- ullet Assume $\mathcal{W}=[\underline{w},\overline{w}]$ and $\mathcal{X}_0=[\underline{x}_0,\overline{x}_0]$

Original system

$$\dot{x} = f(x, w)$$

Embedding system

$$\underline{\dot{x}} = \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}),
\dot{\overline{x}} = \overline{d}(x, \overline{x}, w, \overline{w})$$

$\underline{d}, \overline{d}$ are decomposition functions s.t.

- 2 cooperative: $(\underline{x},\underline{w}) \mapsto \underline{d}(\underline{x},\overline{x},\underline{w},\overline{w})$
- $\textbf{ ompetitive: } (\overline{x},\overline{w}) \mapsto \underline{d}(\underline{x},\overline{x},\underline{w},\overline{w})$
- $oldsymbol{4}$ the same properties for \overline{d}

Embedding into a higher dimensional system

- Key idea: embed the dynamical system on \mathbb{R}^n into a dynamical system on \mathbb{R}^{2n}
- ullet Assume $\mathcal{W}=[\underline{w},\overline{w}]$ and $\mathcal{X}_0=[\underline{x}_0,\overline{x}_0]$

Original system

$$\dot{x} = f(x, w)$$

Embedding system

$$\underline{\dot{x}} = \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}),
\dot{\overline{x}} = \overline{d}(x, \overline{x}, w, \overline{w})$$

 $\underline{d}, \overline{d}$ are decomposition functions s.t.

- **2** cooperative: $(\underline{x},\underline{w}) \mapsto \underline{d}(\underline{x},\overline{x},\underline{w},\overline{w})$
- **3** competitive: $(\overline{x}, \overline{w}) \mapsto \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w})$
- ullet the same properties for \overline{d}

The embedding system is a monotone dynamical system on \mathbb{R}^{2n} with respect to the **southeast** partial order \leq_{SE} :

$$\begin{bmatrix} x \\ \widehat{x} \end{bmatrix} \leq_{\mathrm{SE}} \begin{bmatrix} y \\ \widehat{y} \end{bmatrix} \quad \iff \quad x \leq y \quad \text{and} \quad \widehat{y} \leq \widehat{x}$$

Versatility and History

ullet f locally Lipschitz \Longrightarrow a decomposition function exists

The best (tightest) decomposition function is given by

$$\underline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \min_{\substack{z \in [\underline{x}, \overline{x}], z_i = x_i \\ u \in [\underline{w}, \overline{w}]}} f_i(z, u), \qquad \overline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \max_{\substack{z \in [\underline{x}, \overline{x}], z_i = \overline{x}_i \\ u \in [\underline{w}, \overline{w}]}} f_i(z, u)$$

Versatility and History

ullet f locally Lipschitz \Longrightarrow a decomposition function exists

The best (tightest) decomposition function is given by

$$\underline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \min_{\substack{z \in [\underline{x}, \overline{x}], z_i = \underline{x}_i \\ u \in [\underline{w}, \overline{w}]}} f_i(z, u), \qquad \overline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \max_{\substack{z \in [\underline{x}, \overline{x}], z_i = \overline{x}_i \\ u \in [\underline{w}, \overline{w}]}} f_i(z, u)$$

A short (and incomplete) history:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone systems with negative feedback . Journal of Differential Equations, 2006.

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations and Applications, 2008

Embedding System for Linear Dynamical System

A structure preserving decomposition

• Metzler/non-Metzler decomposition: $A = [A]^{Mzl} + |A|^{Mzl}$

• Example:
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies \lceil A \rceil^{\text{Mzl}} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \lfloor A \rfloor^{\text{Mzl}} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[A]^{Mzl} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Linear systems

Original system

$$\dot{x} = Ax + Bw$$

Embedding system

$$\underline{\dot{x}} = [A]^{\text{Mzl}} \underline{x} + [A]^{\text{Mzl}} \overline{x} + B^{+} \underline{w} + B^{-} \overline{w}
\dot{\overline{x}} = [A]^{\text{Mzl}} \overline{x} + [A]^{\text{Mzl}} \underline{x} + B^{+} \overline{w} + B^{-} \underline{w}$$

Reachability using Embedding Systems

Hyper-rectangular over-approximations

Theorem⁴

Assume $\mathcal{W}=[\underline{w},\overline{w}]$ and $\mathcal{X}_0=[\underline{x}_0,\overline{x}_0]$ and

$$\underline{\dot{x}} = \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}), \qquad \underline{x}(0) = \underline{x}_0$$

$$\dot{\overline{x}} = \overline{d}(\overline{x}, \underline{x}, \overline{w}, \underline{w}), \qquad \overline{x}(0) = \overline{x}_0$$

Then $\mathcal{R}_f(t,\mathcal{X}_0)\subseteq [\underline{x}(t),\overline{x}(t)]$

⁴Coogan and Arcak, "Efficient finite abstraction of mixed monotone systems", HSCC, 2015.

Reachability using Embedding Systems

Hyper-rectangular over-approximations

Theorem⁴

Assume $\mathcal{W}=[\underline{w},\overline{w}]$ and $\mathcal{X}_0=[\underline{x}_0,\overline{x}_0]$ and

$$\underline{\dot{x}} = \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}), \qquad \underline{x}(0) = \underline{x}_0$$

$$\dot{\overline{x}} = \overline{d}(\overline{x}, \underline{x}, \overline{w}, \underline{w}), \qquad \overline{x}(0) = \overline{x}_0$$

Then
$$\mathcal{R}_f(t,\mathcal{X}_0)\subseteq [\underline{x}(t),\overline{x}(t)]$$

(Scalable) a single trajectory of embedding system provides **lower bound** (\underline{x}) and **upper bound** (\overline{x}) for the trajectories of the original system.

⁴Coogan and Arcak, "Efficient finite abstraction of mixed monotone systems", HSCC, 2015.

Original System:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2^3 - x_2 + w \\ x_1 \end{bmatrix}$$

$$\mathcal{W} = \begin{bmatrix} 2.2, 2.3 \end{bmatrix} \quad \mathcal{X}_0 = \begin{bmatrix} \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \end{bmatrix}$$

blue = cooperative, red = competitive

Decomposition function

$$\underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \begin{bmatrix} \underline{x}_2^3 + \underline{w} \\ \underline{x}_1 \end{bmatrix} + \begin{bmatrix} -\overline{x}_2 \\ 0 \end{bmatrix}$$
$$\overline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \begin{bmatrix} \overline{x}_2^3 + \overline{w} \\ \overline{x}_1 \end{bmatrix} + \begin{bmatrix} -\underline{x}_2 \\ 0 \end{bmatrix}$$

Original System:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2^3 - x_2 + w \\ x_1 \end{bmatrix}$$

$$\mathcal{W} = \begin{bmatrix} 2.2, 2.3 \end{bmatrix} \quad \mathcal{X}_0 = \begin{bmatrix} \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \end{bmatrix}$$

blue = cooperative, red = competitive

Decomposition function

$$\underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \begin{bmatrix} \underline{x}_2^3 + \underline{w} \\ \underline{x}_1 \end{bmatrix} + \begin{bmatrix} -\overline{x}_2 \\ 0 \end{bmatrix}$$
$$\overline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) = \begin{bmatrix} \overline{x}_2^3 + \overline{w} \\ \overline{x}_1 \end{bmatrix} + \begin{bmatrix} -\underline{x}_2 \\ 0 \end{bmatrix}$$

Embedding System:

$$\frac{d}{dt} \begin{bmatrix} \underline{x}_1 \\ \underline{x}_2 \\ \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \begin{bmatrix} \underline{x}_2^3 - \overline{x}_2 + \underline{w} \\ \underline{x}_1 \\ \overline{x}_2^3 - \underline{x}_2 + \overline{w} \end{bmatrix} \begin{bmatrix} \underline{w} \\ \overline{w} \end{bmatrix} = \begin{bmatrix} 2.2 \\ 2.3 \end{bmatrix}$$

$$\begin{bmatrix} \underline{x}_1(0) \\ \underline{x}_2(0) \end{bmatrix} = \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix} \begin{bmatrix} \overline{x}_1(0) \\ \overline{x}_2(0) \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Outline of this talk

Reachability Analysis

Mixed Monotone Theory

Neural Network Controlled Systems

Safety Verification

Given the open-loop nonlinear system with a neural network controller

$$\dot{x} = f(x, u, w),$$

$$u = N(x),$$

study reachability of the closed-loop system

$$\dot{x} = f(x, N(x), w) := f^c(x, w)$$

Safety Verification

Given the open-loop nonlinear system with a neural network controller

$$\dot{x} = f(x, u, w),$$

$$u = N(x),$$

study reachability of the closed-loop system

$$\dot{x} = f(x, N(x), w) := f^c(x, w)$$

u=N(x) is k-layer feed-forward neural net $\xi^{(i)}(x)=\phi^{(i)}(W^{(i-1)}\xi^{(i-1)}(x)+b^{(i-1)})$ $x=\xi^{(0)},\ \ u=W^{(k)}\xi^{(k)}(x)+b^{(k)}:=N(x),$

Safety Verification

Given the open-loop nonlinear system with a neural network controller

$$\dot{x} = f(x, u, w),$$

$$u = N(x),$$

study reachability of the closed-loop system

$$\dot{x} = f(x, N(x), w) := f^c(x, w)$$

u = N(x) is k-layer feed-forward neural net

$$\begin{split} \xi^{(i)}(x) &= \phi^{(i)}(W^{(i-1)}\xi^{(i-1)}(x) + b^{(i-1)}) \\ x &= \xi^{(0)}, \ \ u = W^{(k)}\xi^{(k)}(x) + b^{(k)} := N(x), \end{split}$$

Challenge: directly performing reachability on f^c is complicated

N(x) is high dimensional and has a large # of parameters

A Compositional Approach

Reachability of open-loop system treating \boldsymbol{u} as a parameter

A Compositional Approach

Reachability of open-loop system treating \boldsymbol{u} as a parameter

Neural network verification algorithm for bounds on \boldsymbol{u}

A Compositional Approach

Reachability of open-loop system treating \boldsymbol{u} as a parameter

Neural network verification algorithm for bounds on u

Reachability of open-loop system + Neural network verification bounds

A Compositional Approach

Reachability of open-loop system treating \boldsymbol{u} as a parameter

Neural network verification algorithm for bounds on u

Reachability of open-loop system + Neural network verification bounds

If not carefully implemented, it can lead to overly-conservative results

In this talk: how to suitably define this composition

Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: $\dot{x}=f(x,u)$ such that $\frac{\partial f}{\partial x}\in[\underline{J}_{[\underline{x},\overline{x}]},\overline{J}_{[\underline{x},\overline{x}]}]$ and $\frac{\partial f}{\partial u}\in[\underline{J}_{[\underline{u},\overline{u}]},\overline{J}_{[\underline{u},\overline{u}]}]$, then

$$\begin{bmatrix} \underline{\underline{d}}(\underline{x},\overline{x},\underline{\underline{u}},\overline{\underline{u}}) \\ \overline{\underline{d}}(\underline{x},\overline{x},\underline{\underline{u}},\overline{\underline{u}}) \end{bmatrix} = \begin{bmatrix} -[\underline{J}_{[\underline{x},\overline{x}]}]^- & [\underline{J}_{[\underline{x},\overline{x}]}]^+ \\ -[\overline{J}_{[\underline{x},\overline{x}]}]^+ & [\overline{J}_{[\underline{x},\overline{x}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{\underline{x}} \\ \overline{\underline{x}} \end{bmatrix} + \begin{bmatrix} -[\underline{J}_{[\underline{u},\overline{u}]}]^- & [\underline{J}_{[\underline{u},\overline{u}]}]^- \\ -[\overline{J}_{[\underline{u},\overline{u}]}]^+ & [\overline{J}_{[\underline{u},\overline{u}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{\underline{u}} \\ \overline{\underline{t}} \end{bmatrix} + \begin{bmatrix} f(\underline{x},\underline{u}) \\ f(\underline{x},\underline{u}) \end{bmatrix}$$

⁵Harapanahalli, Jafarpour, Coogan. "A Toolbox for Fast Interval Arithmetic in numpy with an Application to Formal Verification of Neural Network Controlled Systems", 2nd WFVML, ICML, 2023

Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: $\dot{x}=f(x,u)$ such that $\frac{\partial f}{\partial x}\in[\underline{J}_{[\underline{x},\overline{x}]},\overline{J}_{[\underline{x},\overline{x}]}]$ and $\frac{\partial f}{\partial u}\in[\underline{J}_{[\underline{u},\overline{u}]},\overline{J}_{[\underline{u},\overline{u}]}]$, then

$$\begin{bmatrix} \underline{d}(\underline{x}, \overline{x}, \underline{u}, \overline{u}) \\ \overline{d}(\underline{x}, \overline{x}, \underline{u}, \overline{u}) \end{bmatrix} = \begin{bmatrix} -[\underline{J}_{[\underline{x}, \overline{x}]}]^- & [\underline{J}_{[\underline{x}, \overline{x}]}]^- \\ -[\overline{J}_{[\underline{x}, \overline{x}]}]^+ & [\overline{J}_{[\underline{x}, \overline{x}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{x} \\ \overline{x} \end{bmatrix} + \begin{bmatrix} -[\underline{J}_{[\underline{u}, \overline{u}]}]^- & [\underline{J}_{[\underline{u}, \overline{u}]}]^- \\ -[\overline{J}_{[\underline{u}, \overline{u}]}]^+ & [\overline{J}_{[\underline{u}, \overline{u}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{u} \\ \overline{u} \end{bmatrix} + \begin{bmatrix} f(\underline{x}, \underline{u}) \\ f(\underline{x}, \underline{u}) \end{bmatrix}$$

 Interval arithmetic allows computing Jacobian bounds efficiently.

⁵Harapanahalli, Jafarpour, Coogan. "A Toolbox for Fast Interval Arithmetic in numpy with an Application to Formal Verification of Neural Network Controlled Systems", 2nd WFVML, ICML, 2023

Mixed Monotone Reachability of Open-loop System

A Jacobian-based decomposition function

Jacobian-based: $\dot{x}=f(x,u)$ such that $\frac{\partial f}{\partial x}\in[\underline{J}_{[\underline{x},\overline{x}]},\overline{J}_{[\underline{x},\overline{x}]}]$ and $\frac{\partial f}{\partial u}\in[\underline{J}_{[\underline{u},\overline{u}]},\overline{J}_{[\underline{u},\overline{u}]}]$, then

$$\begin{bmatrix} \underline{\underline{d}}(\underline{x},\overline{x},\underline{\underline{u}},\overline{\underline{u}}) \\ \overline{\underline{d}}(\underline{x},\overline{x},\underline{\underline{u}},\overline{\underline{u}}) \end{bmatrix} = \begin{bmatrix} -[\underline{J}_{[\underline{x},\overline{x}]}]^- & [\underline{J}_{[\underline{x},\overline{x}]}]^+ \\ -[\overline{J}_{[\underline{x},\overline{x}]}]^+ & [\overline{J}_{[\underline{x},\overline{u}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{\underline{x}} \\ \overline{\underline{x}} \end{bmatrix} + \begin{bmatrix} -[\underline{J}_{[\underline{u},\overline{u}]}]^- & [\underline{J}_{[\underline{u},\overline{u}]}]^- \\ -[\overline{J}_{[\underline{u},\overline{u}]}]^+ & [\overline{J}_{[\underline{u},\overline{u}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{\underline{u}} \\ \overline{\underline{u}} \end{bmatrix} + \begin{bmatrix} f(\underline{x},\underline{u}) \\ f(\underline{x},\underline{u}) \end{bmatrix}$$

- Interval arithmetic allows computing Jacobian bounds efficiently.
- npinterval⁵: Toolbox that implements intervals as native data-type in numpy.

$$[x_2^2 + 2x_1x_2 + x_2^2, 4\sin(x_1/4)\cos(x_2/4) - 4\cos(x_1/4)\sin(x_2/4)]^T$$

⁵Harapanahalli, Jafarpour, Coogan. "A Toolbox for Fast Interval Arithmetic in numpy with an Application to Formal Verification of Neural Network Controlled Systems", 2nd WFVML, ICML, 2023

Interval Bounds for Neural Networks

Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u=N(x)

$$\underline{u}_{[\underline{x},\overline{x}]} \leq N(x) \leq \overline{u}_{[\underline{x},\overline{x}]}, \quad \text{ for all } x \in [\underline{x},\overline{x}]$$

⁶Zhang, Weng, Chen, Hsieh, Daniel. "Efficient neural network robustness certification with general activation functions." NeurIPS. 2018.

Interval Bounds for Neural Networks

Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N(x)

$$\underline{u}_{[\underline{x},\overline{x}]} \leq N(x) \leq \overline{u}_{[\underline{x},\overline{x}]}, \quad \text{ for all } x \in [\underline{x},\overline{x}]$$

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

⁶Zhang, Weng, Chen, Hsieh, Daniel. "Efficient neural network robustness certification with general activation functions." NeurIPS. 2018.

Interval Bounds for Neural Networks

Neural Network Verification Algorithms

Input-output bounds: Given a neural network controller u = N(x)

$$\underline{u}_{[\underline{x},\overline{x}]} \leq N(x) \leq \overline{u}_{[\underline{x},\overline{x}]}, \quad \text{ for all } x \in [\underline{x},\overline{x}]$$

Neural network verification algorithms can produce these bounds (CROWN, LipSDP, IBP, etc)

CROWN⁶

- Bounding the value of each neurons
- Linear upper and lower bounds on the activation function

⁶Zhang, Weng, Chen, Hsieh, Daniel. "Efficient neural network robustness certification with general activation functions." NeurIPS, 2018.

A naive compositional approach

Dynamics of bicycle

$$\begin{aligned} \dot{p_x} &= v \cos(\phi + \beta(u_2)) & \dot{\phi} &= \frac{v}{\ell_r} \sin(\beta(u_2)) \\ \dot{p_y} &= v \sin(\phi + \beta(u_2)) & \dot{v} &= u_1 \\ \beta(u_2) &= \arctan\left(\frac{l_r}{l_f + l_r} \tan(u_2)\right) \end{aligned}$$

A naive compositional approach

Dynamics of bicycle

$$\dot{p}_x = v \cos(\phi + \beta(u_2)) \qquad \dot{\phi} = \frac{v}{\ell_r} \sin(\beta(u_2))$$

$$\dot{p}_y = v \sin(\phi + \beta(u_2)) \qquad \dot{v} = u_1$$

$$\beta(u_2) = \arctan\left(\frac{l_r}{l_f + l_r} \tan(u_2)\right)$$

Goal: steer the bicycle to the origin avoiding the obstacles

A naive compositional approach

Dynamics of bicycle

$$\dot{p}_x = v \cos(\phi + \beta(u_2)) \qquad \dot{\phi} = \frac{v}{\ell_r} \sin(\beta(u_2))$$

$$\dot{p}_y = v \sin(\phi + \beta(u_2)) \qquad \dot{v} = u_1$$

$$\beta(u_2) = \arctan\left(\frac{l_r}{l_f + l_r} \tan(u_2)\right)$$

Goal: steer the bicycle to the origin avoiding the obstacles

 \bullet train a feedforward neural network $4\mapsto 100\mapsto 100\mapsto 2$ using data from model predictive control

Case Study: Bicycle Model

- ullet start from (8,8) toward (0,0)
- $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$ with

$$\underline{x}_0 = \begin{pmatrix} 7.95 & 7.95 & -\frac{\pi}{3} - 0.01 & 1.99 \end{pmatrix}^{\top}$$

 $\overline{x}_0 = \begin{pmatrix} 8.05 & 8.05 & -\frac{\pi}{3} + 0.01 & 2.01 \end{pmatrix}^{\top}$

CROWN for verification of neural network

Embedding system:

$$\underline{\dot{x}} = \underline{d}(\underline{x}, \overline{x}, \underline{\mathbf{u}}, \overline{\mathbf{u}}, \underline{w}, \overline{w})$$

$$\dot{\overline{x}} = \overline{d}(\underline{x}, \overline{x}, \underline{\mathbf{u}}, \overline{\mathbf{u}}, \underline{w}, \overline{w})$$

$$\underline{\mathbf{u}} \leq N(x) \leq \overline{\mathbf{u}}$$
, for every $x \in [\underline{x}, \overline{x}]$.

Case Study: Bicycle Model

- ullet start from (8,8) toward (0,0)
- ullet $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$ with

$$\underline{x}_0 = \begin{pmatrix} 7.95 & 7.95 & -\frac{\pi}{3} - 0.01 & 1.99 \end{pmatrix}^{\top}$$

 $\overline{x}_0 = \begin{pmatrix} 8.05 & 8.05 & -\frac{\pi}{3} + 0.01 & 2.01 \end{pmatrix}^{\top}$

CROWN for verification of neural network

Euler integration with step h:

$$\underline{x}_1 = \underline{x}_0 + h\underline{d}(\underline{x}_0, \overline{x}_0, \underline{u}_0, \overline{u}_0, \underline{w}, \overline{w})$$
$$\overline{x}_1 = \overline{x}_0 + h\overline{d}(\underline{x}_0, \overline{x}_0, \underline{u}_0, \overline{u}_0, \underline{w}, \overline{w})$$

 $\underline{u}_0 \leq N(x) \leq \overline{u}_0$, for every $x \in [\underline{x}_0, \overline{x}_0]$.

Case Study: Bicycle Model

- ullet start from (8,8) toward (0,0)
- ullet $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$ with

$$\underline{x}_0 = \begin{pmatrix} 7.95 & 7.95 & -\frac{\pi}{3} - 0.01 & 1.99 \end{pmatrix}^{\top}$$

 $\overline{x}_0 = \begin{pmatrix} 8.05 & 8.05 & -\frac{\pi}{3} + 0.01 & 2.01 \end{pmatrix}^{\top}$

CROWN for verification of neural network

Euler integration with step h:

$$\underline{x}_2 = \underline{x}_1 + \underline{h}\underline{d}(\underline{x}_1, \overline{x}_1, \underline{u}_1, \overline{u}_1, \underline{w}, \overline{w})$$
$$\overline{x}_2 = \overline{x}_1 + \underline{h}\overline{d}(\underline{x}_1, \overline{x}_1, \underline{u}_1, \overline{u}_1, \underline{w}, \overline{w})$$

$$\underline{\mathbf{u}}_1 \leq N(x) \leq \overline{\mathbf{u}}_1$$
, for every $x \in [\underline{x}_1, \overline{x}_1]$.

Case Study: Bicycle Model

- ullet start from (8,8) toward (0,0)
- ullet $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$ with

$$\underline{x}_0 = \begin{pmatrix} 7.95 & 7.95 & -\frac{\pi}{3} - 0.01 & 1.99 \end{pmatrix}^{\top}$$

 $\overline{x}_0 = \begin{pmatrix} 8.05 & 8.05 & -\frac{\pi}{3} + 0.01 & 2.01 \end{pmatrix}^{\top}$

CROWN for verification of neural network

Euler integration with step h:

$$\underline{x}_3 = \underline{x}_2 + h\underline{d}(\underline{x}_2, \overline{x}_2, \underline{u}_2, \overline{u}_2, \underline{w}, \overline{w})$$

$$\overline{x}_3 = \overline{x}_2 + h\overline{d}(\underline{x}_2, \overline{x}_2, \underline{u}_2, \overline{u}_2, \underline{w}, \overline{w})$$

 $\underline{u_2} \leq N(x) \leq \overline{u_2}$, for every $x \in [\underline{x_2}, \overline{x_2}]$.

Issues with the compositional approach

Neural network controller as **disturbances** (worst-case scenario) It does not capture the **stabilizing** effect of the neural network.

Issues with the compositional approach

Neural network controller as **disturbances** (worst-case scenario) It does not capture the **stabilizing** effect of the neural network.

An illustrative example

 $\dot{x} = x + u + w$ with controller u = -Kx, for some unknown $1 < K \le 3$.

Issues with the compositional approach

Neural network controller as **disturbances** (worst-case scenario) It does not capture the **stabilizing** effect of the neural network.

An illustrative example

 $\dot{x} = x + u + w$ with controller u = -Kx, for some unknown $1 < K \le 3$.

Naive interconnection approach

First find the bounds $u \leq Kx \leq \overline{u}$, then

This system is unstable.

Interaction approach

First replace u = Kx in the system, then

$$\underline{\dot{x}} = (1 - \underline{K})\underline{x} + \underline{w}
\dot{\overline{x}} = (1 - \underline{K})\overline{x} + \overline{w}$$

This system is stable.

Issues with the compositional approach

Neural network controller as **disturbances** (worst-case scenario) It does not capture the **stabilizing** effect of the neural network.

An illustrative example

 $\dot{x} = x + u + w$ with controller u = -Kx, for some unknown $1 < K \le 3$.

Naive interconnection approach

First find the bounds $\underline{u} \leq Kx \leq \overline{u}$, then

This system is unstable.

Interaction approach

First replace u = Kx in the system, then

$$\underline{\dot{x}} = (1 - \underline{K})\underline{x} + \underline{w}
\dot{\overline{x}} = (1 - \underline{K})\overline{x} + \overline{w}$$

This system is stable.

We need to know the **functional** dependencies of neural network bounds

Functional Bounds for Neural Networks

Function Approximation

Functional bounds: Given a neural network controller u = N(x)

$$\underline{N_{[\underline{x},\overline{x}]}}(x) \leq N(x) \leq \overline{N}_{[\underline{x},\overline{x}]}(x), \quad \text{ for all } x \in [\underline{x},\overline{x}]$$

⁷Zhang, Weng, Chen, Hsieh, Daniel. "Efficient neural network robustness certification with general activation functions." NeurIPS, 2018.

Functional Bounds for Neural Networks

Function Approximation

Functional bounds: Given a neural network controller u = N(x)

$$\underline{N_{[\underline{x},\overline{x}]}}(x) \leq N(x) \leq \overline{N}_{[\underline{x},\overline{x}]}(x), \quad \text{ for all } x \in [\underline{x},\overline{x}]$$

• Example: CROWN⁷can provide functional bounds.

CROWN functional bounds:

$$\begin{split} & \underline{N}_{[\underline{x},\overline{x}]}(x) = \underline{A}_{[\underline{x},\overline{x}]}x + \underline{b}_{[\underline{x},\overline{x}]}, \\ & \overline{N}_{[\underline{x},\overline{x}]}(x) = \overline{A}_{[\underline{x},\overline{x}]}x + \overline{b}_{[\underline{x},\overline{x}]} \end{split}$$

CROWN input-output bounds:

$$\begin{split} &\underline{u}_{[\underline{x},\overline{x}]} = \underline{A}_{[\underline{x},\overline{x}]}^+ \overline{x} + \overline{A}_{[\underline{x},\overline{x}]}^- \underline{x} + \underline{b}_{[\underline{x},\overline{x}]}, \\ &\overline{u}_{[\underline{x},\overline{x}]} = \overline{A}_{[\underline{x},\overline{x}]}^+ \overline{x} + \underline{A}_{[\underline{x},\overline{x}]}^- \underline{x} + \overline{b}_{[\underline{x},\overline{x}]} \end{split}$$

⁷Zhang, Weng, Chen, Hsieh, Daniel. "Efficient neural network robustness certification with general activation functions." NeurIPS. 2018.

Interaction Approach

A pictorial explanation

Original system:

$$\frac{\dot{x} = f(x, N(x), w)}{\text{closed-loop system}}$$

Embedding system:

$$\longrightarrow \begin{bmatrix} \underline{\dot{x}} \\ \overline{\dot{x}} \end{bmatrix} = \begin{bmatrix} \underline{\underline{H}}_{+}^{+} - \underline{J}_{[\underline{x},\overline{x}]} & \underline{\underline{H}}_{-}^{-} \\ \overline{\underline{H}}_{+}^{+} - J_{[\underline{x},\overline{x}]} & \overline{\underline{H}}_{-}^{-} \end{bmatrix} \begin{bmatrix} \underline{x} \\ \overline{x} \end{bmatrix} + \begin{bmatrix} -[\underline{J}_{[\underline{w},\overline{w}]}^{-}]^{-} & [\underline{J}_{[\underline{w},\overline{w}]}^{-}]^{+} \end{bmatrix} \begin{bmatrix} \underline{w} \\ \overline{w} \end{bmatrix} + Q$$

$$\text{closed-loop embedding system}$$

How does the interaction approach work?

- Closed-loop decomposition function = Jacobian based for f(x, N(x), w).
- Neural Network affine functional bounds

$$\begin{array}{l} \underline{N}_{[\underline{x},\overline{x}]} = \underline{A}_{[\underline{x},\overline{x}]}x + \underline{b}_{[\underline{x},\overline{x}]},\\ \overline{N}_{[\underline{x},\overline{x}]} = \overline{A}_{[\underline{x},\overline{x}]}x + \overline{b}_{[\underline{x},\overline{x}]}\\ \text{are used to compute the interactions.} \end{array}$$

Systems with NN Controllers

Interaction Approach

Theorem⁸

Let
$$\frac{\partial f}{\partial x} \in [\underline{J}_{[\underline{x},\overline{x}]},\overline{J}_{[\underline{x},\overline{x}]}]$$
, $\frac{\partial f}{\partial u} \in [\underline{J}_{[\underline{u},\overline{u}]},\overline{J}_{[\underline{u},\overline{u}]}]$, and $\frac{\partial f}{\partial w} \in [\underline{J}_{[\underline{w},\overline{w}]},\overline{J}_{[\underline{w},\overline{w}]}]$. Then

$$\begin{bmatrix} \underline{d}_i^c(\underline{x},\overline{x},\underline{w},\overline{w}) \\ \overline{d}_i^c(\underline{x},\overline{x},\underline{w},\overline{w}) \end{bmatrix} = \begin{bmatrix} [\underline{\boldsymbol{H}}]^+ - \underline{J}_{[\underline{x},\overline{x}]} & [\underline{\boldsymbol{H}}]^- \\ [\overline{\boldsymbol{H}}]^+ - \overline{J}_{[\underline{x},\overline{x}]} & [\overline{\boldsymbol{H}}]^- \end{bmatrix} \begin{bmatrix} \underline{x} \\ \overline{x} \end{bmatrix} + \begin{bmatrix} -[\underline{J}_{[\underline{w},\overline{w}]}]^- & [\underline{J}_{[\underline{w},\overline{w}]}]^+ \\ -[\overline{J}_{[\underline{w},\overline{w}]}]^- & [\overline{J}_{[\underline{w},\overline{w}]}]^+ \end{bmatrix} \begin{bmatrix} \underline{w} \\ \overline{w} \end{bmatrix} + Q$$

where

$$\frac{\underline{H}}{\underline{H}} = \underline{J}_{[\underline{x},\overline{x}]} + [\underline{J}_{[\underline{u},\overline{u}]}]^{+} \underline{A}_{[\underline{x},\overline{x}]} + [\underline{J}_{[\underline{u},\overline{u}]}]^{-} \overline{A}_{[\underline{x},\overline{x}]}$$

$$\overline{\underline{H}} = \overline{J}_{[\underline{x},\overline{x}]} + [\underline{J}_{[\underline{u},\overline{u}]}]^{+} \overline{A}_{[\underline{x},\overline{x}]} + [\underline{J}_{[\underline{u},\overline{u}]}]^{-} \underline{A}_{[\underline{x},\overline{x}]}$$

is a decomposition function for the closed-loop system.

⁸ Jafarpour, Harapanahalli, Coogan. "Efficient Interaction-aware Interval Reachability of Neural Network Feedback Loops", arXiv, 2003

Numerical Experiments

- start from (8,7) toward (0,0)
- $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$ with

$$\underline{x}_0 = \begin{pmatrix} 7.95 & 6.95 & -\frac{2\pi}{3} - 0.01 & 1.99 \end{pmatrix}^{\top}$$

 $\overline{x}_0 = \begin{pmatrix} 8.05 & 7.05 & -\frac{2\pi}{3} + 0.01 & 2.01 \end{pmatrix}^{\top}$

CROWN for verification of neural network

Conclusions

and follow-up work

- Reachability as a framework for safety certification
- Mixed monotone theory as a computationally efficient method for reachability
- Reachability of neural network controlled systems
- Capture the interaction between system and neural network controller

Follow-up work: Forward invariance (safety guarantees for infinite time)

Harapanahalli, Jafarpour, and Coogan. Forward Invariance in Neural Network Controlled Systems. arXiv, Sep 2023