Weak and Semi-contractions for Large-Scale Network Systems

Saber Jafarpour

Decision and Control Laboratory Georgia Institute of Technology

April 26, 2023

Acknowledgment

Francesco Bullo UCSB

Alexander Davydov UCSB

Pedro Cisneros-Velarde UCSB

Samuel Coogan Georgia Tech

SJ and P. Cisneros-Velarde and F. Bullo. Weak and Semi-Contraction for Network Systems and Diffusively-Coupled Oscillators. IEEE Transactions on Automatic Control, Mar. 2021.

A. Davydov and SJ and F. Bullo. Non-Euclidean Contraction Theory for Robust Nonlinear Stability. IEEE Transactions on Automatic Control, Dec. 2022

P. Cisneros-Velarde and SJ and F. Bullo. Distributed and time-varying primal-dual dynamics via contraction analysis. IEEE Transactions on Automatic Control, June 2021.

Large-scale nonlinear networks

Introduction

Transportation networks

Brain neural network

Learning-based systems

- large penetration of inteligent units in power and transportation networks
- increasing deployment of neural networks in safety-critical systems
- Brain neural networks consist of billions of neurons interacting with each other

societal autonomous systems are becoming large-scale with interconnected and nonlinear components

Many networks in nature are extremely large and nonlinear

Goal: to analyze, monitor, and control these large-scale networks

What are the issues with the *classical stability and control* approaches? (Lyapunov-based methods)

- computing the equilibria or operating points
 - computationally heavy for large-scale networks with varying parameters
- 2 ℓ_2 -norm-based conditions
 - LMI and SOS are not scalable for large networks
- reduction to low-dimensional submanifolds
 - No systematic approach for convergence to subspaces or submanifolds

Presentation outline

• non-Euclidean contraction theory

- definition and basic properties
- differential and integral characterizations

weakly-contracting systems

- definition and examples
- dichotomy in asymptotic behavior
- example: distributed primal-dual

semi-contracting systems

- definition and examples
- convergence to invariant subspaces
- example: diffusively-coupled oscillators

A framework for stability analysis

Definition (Contraction)

 $\dot{x} = f(t, x)$ is contracting wrt $\| \cdot \|$ if

the distance between every two trajectory is decreasing exponentially with rate c wrt $\|\cdot\|$

A framework for stability analysis

Definition (Contraction)

 $\dot{x} = f(t,x)$ is contracting wrt $\|\cdot\|$ if

the distance between every two trajectory is decreasing exponentially with rate c wrt $\|\cdot\|$

Ordered transient and asymptotic behaviors:

- unique globally exponential stable equilibrium
- efficient equilibrium point computation
- input-output robustness
- modularity and interconnection properties

. . .

Historical references

- B. P. Demidovich. Dissipativity of a nonlinear system of differential equations. *Uspekhi Matematicheskikh Nauk*, 16(3(99)):216, 1961
- Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696, 1998
- Differential framework: F. Forni and R. Sepulchre. A differential Lyapunov framework for contraction analysis. *IEEE Trans. Autom. Control*, 59(3):614–628, 2014
- Non-Euclidean contraction: S. Coogan. A contractive approach to separable Lyapunov functions for monotone systems. *Automatica*, 106:349–357, 2019
- Review: M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex networks via contraction theory. In Complex Systems and Networks: Dynamics, Controls and Applications, pages 313–339. Springer, 2016

 Review: Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In *Proc CDC*, pages 3835–3847, Dec. 2014

Differential and Integral characterizations

Differential condition

Logarithmic norm

Given a matrix $A \in \mathbb{R}^{n \times n}$ and a norm $\|\cdot\|$: $\mu_{\|\cdot\|}(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$

• Directional derivative of norm $\|\cdot\|$ in direction of A,

$$\mu_2(A) = \frac{1}{2}\lambda_{\max}(A + A^{\top})$$

$$\mu_1(A) = \max_j \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right)$$

$$\mu_{\infty}(A) = \max_i \left(a_{ii} + \sum_{j \neq i} |a_{ij}| \right)$$

¹A. Davydov, S. Jafarpour, F. Bullo, TAC 2022

Differential and Integral characterizations

Differential condition

Logarithmic norm

Given a matrix
$$A \in \mathbb{R}^{n \times n}$$
 and a norm $\|\cdot\|$:
$$\mu_{\|\cdot\|}(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$

• Directional derivative of norm $\|\cdot\|$ in direction of A,

$$\begin{split} \mu_2(A) &= \frac{1}{2} \lambda_{\max}(A + A^{\top}) \\ \mu_1(A) &= \max_j \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right) \\ \mu_\infty(A) &= \max_i \left(a_{ii} + \sum_{j \neq i} |a_{ij}| \right) \end{split}$$

¹A. Davydov, S. Jafarpour, F. Bullo, TAC 2022

Integral condition

Weak pairing¹

Given a norm $\|\cdot\|$, the associated weak pairing is $[\![\cdot,\cdot]\!]: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$:

- Subadditive and weakly homogeneity
- Positive definite
- Cauchy-Schwarz inequality
- $[\![x,x]\!] = |\!|x|\!|^2$

$$\llbracket x, y \rrbracket_2 = y^\top x$$
$$\llbracket x, y \rrbracket_1 = \operatorname{sign}(y)^\top x$$
$$\llbracket x, y \rrbracket_\infty = \max_{i \in I_\infty(x)} x_i y_i$$

$$I_{\infty}(x) = \{i \mid |x_i| = ||x||_{\infty}\}$$

Differential and Integral characterizations

Theorem² $\dot{x} = f(t, x)$ is contracting wrt $\|\cdot\|$ with rate c iffDifferential: $\mu_{\|\cdot\|}(D_x f(t, x)) \leq -c$, for all x, tIntegral: $[\![f(t, x) - f(t, y), x - y]\!] \leq -c ||x - y||^2$, for all x, y, t

² A. Davydov, S. Jafarpour, F. Bullo, TAC 2022

Differential and Integral characterizations

Theorem $\dot{x} = f(x, u)$ is contracting wrt $\|\cdot\|$ with rate c iffDifferential: $\mu_{\|\cdot\|}(D_x f(x, u)) \leq -c$, for all x, uIntegral: $[\![f(x, u) - f(y, u), x - y]\!] \leq -c ||x - y||^2$, for all x, y, u

• Connection between contraction theory and monotone operator theory

 $\begin{array}{c} f \text{ is a contracting vector field wrt to } \|\cdot\|_2 \\ \quad \text{iff} \\ -f \text{ is a strongly monotone operator wrt to the inner product } \langle\cdot,\cdot\rangle. \end{array}$

Differential and Integral characterizations

Theorem $\dot{x} = f(x, u)$ is contracting wrt $\|\cdot\|$ with rate c iffDifferential: $\mu_{\|\cdot\|}(D_x f(x, u)) \leq -c$, for all x, uIntegral: $[\![f(x, u) - f(y, u), x - y]\!] \leq -c ||x - y||^2$, for all x, y, u

• Connection between contraction theory and monotone operator theory

f is a contracting vector field wrt to $\|\cdot\|$ iff -f is a strongly monotone operator wrt to the weak pairing $[\![\cdot,\cdot]\!]$.

Application to large-scale networks

Challenge: many real-world networks are not contracting.

invariance, symmetry: $f(x + \alpha \mathbb{1}_n) = f(x)$

Application to large-scale networks

Challenge: many real-world networks are not contracting.

conservation law: $\mathbb{1}_n^\top x(t) = \text{const}$

invariance, symmetry: $f(x + \alpha \mathbb{1}_n) = f(x)$

For a vector field f and positive vectors $\eta, \xi \in \mathbb{R}^n_{\geq 0}$,			
conservation law	$\eta^\top f(x) = \eta^\top f(y) \ \forall x, y$	\iff	$\eta^{\top} D_x f(x) = 0 \ \forall x$
translation invariance	$f(x + \alpha\xi) = f(x) \ \forall x, \alpha$	\iff	$D_x f(x)\xi = 0 \ \forall x$

Application to large-scale networks

Challenge: many real-world networks are not contracting.

conservation law: $\mathbb{1}_n^\top x(t) = \text{const}$

invariance, symmetry: $f(x + \alpha \mathbb{1}_n) = f(x)$

For a vector field f and positive vectors $\eta, \xi \in \mathbb{R}^n_{\geq 0}$, conservation law $\eta^\top f(x) = \eta^\top f(y) \ \forall x, y \iff \eta^\top D_x f(x) = 0 \ \forall x$ translation invariance $f(x + \alpha \xi) = f(x) \ \forall x, \alpha \iff D_x f(x) \xi = 0 \ \forall x$

If f satisfies a conservation or resp. invariance, then

 $(D_x f) \ge 0,$

 $\textbf{ 2 if, additionally, } f \text{ is cooperative, then } \mu_{1,[\eta]}(D_x f) = 0 \text{ or resp. } \mu_{\infty,[\xi]^{-1}}(D_x f) = 0$

S. Jafarpour (Georgia Tech)

Presentation outline

• non-Euclidean contraction theory

- definition and basic properties
- differential and integral characterizations

weakly-contracting systems

- definition and examples
- dichotomy in asymptotic behavior
- example: distributed primal-dual

semi-contracting systems

- definition and examples
- convergence to invariant subspaces
- example: diffusively-coupled oscillators

Definition and examples

Definition: Weakly-contracting systems

 $\dot{x} = f(t, x)$ with f continuously differentiable in x is weakly-contracting wrt $\|\cdot\|$:

 $\mu_{\|\cdot\|}(D_x f(t,x)) \le 0$

Definition and examples

Definition: Weakly-contracting systems

 $\dot{x} = f(t, x)$ with f continuously differentiable in x is weakly-contracting wrt $\|\cdot\|$:

 $\mu_{\|\cdot\|}(D_x f(t,x)) \le 0$

- **1** Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (ℓ_1 -norm)
- **2** Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (ℓ_1 -norm and ℓ_{∞} -norm)
- **3** Daganzo's cell transmission model for traffic networks (Daganzo, 1994), $(\ell_1$ -norm)
- m 0 compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978). (ℓ_1 -norm)
- 3 saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (ℓ_2 -norm)

What is the *asymptotic behavior* of weakly-contracting systems?

What is the *asymptotic behavior* of contracting systems?

What is the *asymptotic behavior* of contracting systems?

Classical Theorem

- $\dot{x} = f(x)$ is contracting, then
 - $\bullet \,\, f$ has a unique globally asymptotically stable equilibrium x^*

What is the *asymptotic behavior* of weakly-contracting systems?

Theorem: Dichotomy

 $\dot{x}=f(x)$ is weakly-contracting, then either

- \bigcirc f has no equilibrium and every trajectory is unbounded, or
- **2** f has at least one equilibrium x^* and every trajectory is bounded.

Theorem

- $\dot{x} = f(x)$ is weakly-contracting with at least one equilibrium point x^* :
- (i) each equilibrium is stable
- (ii) if $\|\cdot\|$ is a polyhedral norm, then every trajectory converges to the set of equilibria,
- (iii) x^* is locally asymptotically stable $\implies x^*$ is globally asymptotically stable.

Idea of the proof

Example: Primal-dual algorithm

Distributed implementation over networks

Optimization problem:
$$\min_{x \in \mathbb{R}^k} f(x) = \min_{x \in \mathbb{R}^k} \sum_{i=1}^n f_i(x).$$

Distributed implementation

- n agents locally minimize f and communicate over a undirected weighted graph G,
- agent i have access to function f_i and can exchange x_i with its neighbors.

$$\min_{x \in \mathbb{R}^k} \sum_{i=1}^n f_i(x_i)$$
$$x_1 = x_2 = \ldots = x_r$$

In matrix form by assuming $x = (x_1^{\top}, \dots, x_n^{\top})^{\top} \in \mathbb{R}^{nk}$:

$$\min_{x \in \mathbb{R}^k} \sum_{i=1}^n f_i(x_i) \\ (L \otimes I_k)x = \mathbb{O}_{nN}$$

Example: Primal-dual algorithm

Distributed implementation over networks

If each f_i is continuously differentiable in x_i :

Lagrangian $\mathcal{L}(x,\nu) = \sum_{i=1}^{n} f_i(x_i) + \nu^{\top} (L \otimes I_k) x$

Distributed primal-dual algorithm (component form):

$$\dot{x}_i = -\frac{\partial \mathcal{L}}{\partial x_i} = -\nabla f_i(x_i) - \sum_{j=1}^n a_{ij}(\nu_i - \nu_j),$$
$$\dot{\nu}_i = \frac{\partial \mathcal{L}}{\partial \nu_i} = \sum_{j=1}^n a_{ij}(x_i - x_j)$$

Example: Primal-dual algorithm $\ell_{2-\text{norm weak contraction}}$

Distributed primal-dual algorithm (vector form):

$$\dot{x} = -rac{\partial \mathcal{L}}{\partial x} = -
abla f(x) - (L \otimes I_k)
u,$$

 $\dot{
u} = rac{\partial \mathcal{L}}{\partial
u} = (L \otimes I_k)x$

$$Dg(x,\nu) + Dg(x,\nu)^{\top} = \begin{bmatrix} -\nabla^2 f(x) & -(L \otimes I_k) \\ (L \otimes I_k) & 0 \end{bmatrix} + \begin{bmatrix} -\nabla^2 f(x) & (L \otimes I_k) \\ -(L \otimes I_k) & 0 \end{bmatrix} = \begin{bmatrix} -\nabla^2 f(x) & 0 \\ 0 & 0 \end{bmatrix}$$

 $f \text{ is convex } \implies \ \ \mu_2(Dg(x,\nu))=0$

Example: Primal-dual algorithm Stability and rate of convergence

- f is convex and has a global minimum $x^* \in \mathbb{R}^k$,
- 2 $\nabla^2 f_i(x) \succeq 0$ for all x, and $\nabla^2 f_i(x^*) \succ 0$, and
- **③** the undirected weighted graph G is connected with Laplacian L.

Theorem

The distributed primal-dual algorithm

() is weakly-contracting wrt ℓ_2 -norm,

$$(x(t),\nu(t)) \to (\mathbb{1}_n \otimes x^*,\mathbb{1}_n \otimes \nu^*), \text{ with } \nu^* = \sum_{i=1}^n \nu_i(0),$$

• exponential convergence rate is $-\alpha_{ess} \begin{pmatrix} \begin{bmatrix} -\nabla^2 f(x^*) & -L \otimes I_k \\ L \otimes I_k & 0 \end{bmatrix}$ where

$$\alpha_{\mathrm{ess}}(A) := \max\{\Re(\lambda) \mid \lambda \in \operatorname{spec}(A) \setminus \{0\}\}.$$

Presentation outline

• non-Euclidean contraction theory

- definition and basic properties
- differential and integral characterizations

weakly-contracting systems

- definition and examples
- dichotomy in asymptotic behavior
- example: distributed primal-dual

• semi-contracting systems

- definition and examples
- convergence to invariant subspaces
- example: diffusively-coupled oscillators

Definition (Semi-norm) ∭·∭ is a *semi-norm* if

$$\| \|v + w \| \le \| \|v \| + \| \|w \|, \text{ for every } v, w \in \mathbb{R}^n.$$

Definition (Semi-norm)

$$|||v + w||| \le |||v||| + |||w|||, \text{ for every } v, w \in \mathbb{R}^n.$$

• desired submanifold: Ker $\|\cdot\| = \{v \in \mathbb{R}^n \mid \|v\| = 0\}.$

Definition (Semi-norm) $\| \cdot \| \text{ is a semi-norm if}$ $\| \|cv\| = |c| \| v\| \text{, for every } v \in \mathbb{R}^n \text{ and } c \in \mathbb{R};$ $\| v + w\| \leq \| v\| + \| w\| \text{, for every } v, w \in \mathbb{R}^n.$

- desired submanifold: Ker $\|\cdot\| = \{v \in \mathbb{R}^n \mid \|v\| = 0\}.$
- Example: for k < n, $R \in \mathbb{R}^{k \times n}$, and norm $\|\cdot\|$, we get $\|\|x\|\|_{R} = \|Rx\|$.

Logarithmic semi-norms

Definition (Logarithmic semi-norm)

The Logarithmic semi-norm of $A \in \mathbb{R}^{n \times n}$ wrt $\| \cdot \|$:

$$\mu_{\Vert\!\Vert\cdot\Vert\!\Vert}(A) = \lim_{h \to 0^+} \frac{\Vert\!\Vert I_n + hA \Vert\!\Vert - 1}{h}.$$

- Directional derivative of $\|\cdot\|$ in direction of A.
- if Ker $\|\|\cdot\|\|$ is invariant under A then $\Re(\lambda) \le \mu_{\|\|\cdot\|}(A)$, for every $\lambda \in \operatorname{spec}_{\operatorname{Ker} \|\|\cdot\|^{\perp}}(A^{\top})$.

Definition and examples

Definition (Semi-contraction)

 $\dot{x} = f(t, x)$ with f continuously differentiable in x is semi-contracting wrt the semi-norm $\|\cdot\|$ with rate c > 0:

$\mu_{\mathrm{const}}(D_x f(t,x)) \leq -c$

Definition and examples

Definition (Semi-contraction)

 $\dot{x} = f(t, x)$ with f continuously differentiable in x is semi-contracting wrt the semi-norm $\|\cdot\|$ with rate c > 0:

$\mu_{\mathrm{const}}(D_x f(t,x)) \leq -c$

- **(** Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (ℓ_1 -norm)
- 2 Chua's diffusively-coupled circuits (Wu and Chua, 1995), (ℓ_2 -norm)
- \bigcirc morphogenesis in developmental biology (Turing, 1952), (ℓ_1 -norm)
- ④ Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (ℓ_1 -norm)

Semi-contracting systems

Asymptotic behavior

- $\dot{x}=f(t,x)$ is semi-contracting wrt the semi-norm $||\!|\cdot|\!|\!|$ with rate c>0, and
- (Affine invariance): $f(t, x^* + \operatorname{Ker} ||| \cdot |||) \subseteq \operatorname{Ker} ||| \cdot |||$ for every t

Theorem

① for every trajectory x(t),

$$|||x(t) - x^*||| \le e^{-ct} |||x(0) - x^*|||, \qquad \text{for every } t \ge 0.$$

2 every trajectory converges to $x^* + \text{Ker} ||| \cdot |||$.

Semi-contracting systems

Asymptotic behavior

- $\dot{x} = f(t,x)$ is semi-contracting wrt the semi-norm $||\!|\cdot|\!|\!|$ with rate c > 0, and
- (Affine invariance): $f(t, x^* + \operatorname{Ker} ||| \cdot |||) \subseteq \operatorname{Ker} ||| \cdot |||$ for every t

Theorem

0 for every trajectory x(t),

$$|||x(t) - x^*||| \le e^{-ct} |||x(0) - x^*|||, \qquad \text{for every } t \ge 0.$$

2 every trajectory converges to $x^* + \operatorname{Ker} ||| \cdot |||$.

 partial contraction (only for l₂-norms): W. Wang and J.-J. E. Slotine. On partial contraction analysis for coupled nonlinear oscillators.

Biological Cybernetics, 92(1):38–53, 2005

• horizontal contraction (stronger assumptions): F. Forni and R. Sepulchre. A differential Lyapunov framework for contraction analysis.

IEEE Trans. Autom. Control, 59(3):614-628, 2014

Example: Diffusively-coupled oscillators Synchronization

- n agents with states $x_1, \ldots, x_n \in \mathbb{R}^k$ and $x = (x_1, \ldots, x_n)^\top$
- identical internal dynamics *f*;
- interconnected by a weighted undirected connected graph G using diffusive coupling

 $\dot{x}_i = f(t, x_i) - \sum_{j=1}^n a_{ij}(x_i - x_j), \quad i \in \{1, \dots, n\}$

Example: Diffusively-coupled oscillators Synchronization

- n agents with states $x_1, \ldots, x_n \in \mathbb{R}^k$ and $x = (x_1, \ldots, x_n)^\top$
- identical internal dynamics *f*;
- interconnected by a weighted undirected connected graph G using diffusive coupling

$$\dot{x}_i = f(t, x_i) - \sum_{j=1}^n a_{ij}(x_i - x_j), \quad i \in \{1, \dots, n\}$$

Applications: Biological networks, Chemical reaction systems, neural networks A canonical model for weakly coupled oscillators

Example: Diffusively-coupled oscillators Synchronization

- n agents with states $x_1, \ldots, x_n \in \mathbb{R}^k$ and $x = (x_1, \ldots, x_n)^\top$
- identical internal dynamics *f*;
- interconnected by a weighted undirected connected graph G using diffusive coupling

$$\dot{x}_i = f(t, x_i) - \sum_{j=1}^n a_{ij}(x_i - x_j), \quad i \in \{1, \dots, n\}$$

Applications: Biological networks, Chemical reaction systems, neural networks A canonical model for weakly coupled oscillators

Goal: asym sync
$$\lim_{t\to\infty} ||x_i - x_j|| = 0$$
 for every i, j

Example: Diffusively-coupled oscillators

Semi-norms for synchronization

For undirected G with Laplacian L:

The orthogonal projection $\Pi : \mathbb{R}^n \to \operatorname{span}\{\mathbb{1}_n\}^{\perp}$

$$\Pi = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^\top = \begin{bmatrix} \frac{n-1}{n} & -\frac{1}{n} & \dots & -\frac{1}{n} \\ -\frac{1}{n} & \frac{n-1}{n} & \dots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \dots & \frac{n-1}{n} \end{bmatrix} \succeq 0$$

- $(\Pi \otimes I_k)x$ measures dissimilarity of the states x_i
- $\mu_{2,\Pi}(-L) = -\lambda_2(L)$

Example: Diffusively-coupled oscillators

Semi-norms for synchronization

For undirected G with Laplacian L:

The orthogonal projection $\Pi : \mathbb{R}^n \to \operatorname{span}\{\mathbb{1}_n\}^{\perp}$

$$\Pi = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\top} = \begin{bmatrix} \frac{n-1}{n} & -\frac{1}{n} & \dots & -\frac{1}{n} \\ -\frac{1}{n} & \frac{n-1}{n} & \dots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \dots & \frac{n-1}{n} \end{bmatrix} \succeq 0$$

- $(\Pi \otimes I_k)x$ measures dissimilarity of the states x_i
- $\mu_{2,\Pi}(-L) = -\lambda_2(L)$

Given a norm $\|\cdot\|$, we define $\|\|x\|\|_{\Pi\otimes I_k} = \|(\Pi\otimes I_k)x\|$ We have $\operatorname{Ker}_{\|\|\cdot\|} = \mathbb{1}_n \otimes \mathbb{R}^n = \operatorname{synchronization}$ Two main factors in synchronization:

contractivity of the internal dynamics

2 strength of the diffusive coupling

Two main factors in synchronization:

- O contractivity of the internal dynamics
- 2 strength of the diffusive coupling

local-global mixed norm: (2, p)-tensor norm on $\mathbb{R}^{nk} = \mathbb{R}^n \otimes \mathbb{R}^k$

$$\|u\|_{(2,p)} = \inf \left\{ \left(\sum_{i=1}^r \|v^i\|_2^2 \|w^i\|_p^2 \right)^{\frac{1}{2}} \mid u = \sum_{i=1}^r v^i \otimes w^i \right\}.$$

- Global norm: ℓ_2 -norm for the interactions between agents
- Local norm: ℓ_p -norm for internal dynamics of each agent

Example: Diffusively-coupled oscillators

Semi-contraction

$$\dot{x}_i = f(t, x_i) - \sum_{j=1}^n a_{ij}(x_i - x_j), \quad i \in \{1, \dots, n\}$$

 ${\cal G}$ is a connected weighted graph with Laplacian ${\cal L}$

Theorem

Suppose that

$$\mu_p(Df(t,x)) \le \lambda_2(L) - c,$$
 for every t, x

then

- **(**) the dynamics is semi-contracting wrt $\|\cdot\|_{(2,p),(\Pi\otimes I_k)}$;
- **2** for every trajectory x(t),

$$\|x(t) - \mathbb{1}_n \otimes x_{\text{ave}}(t)\|_{(2,p),(\Pi \otimes I_k)} \le e^{-ct} \|x(0) - \mathbb{1}_n \otimes x_{\text{ave}}(0)\|_{(2,p),(\Pi \otimes I_k)}.$$

(a) the system achieves synchronization: $\lim_{t\to\infty} x(t) = \mathbb{1}_n \otimes x_{\text{ave}}(t)$ where $x_{\text{ave}}(t) = \frac{1}{n} \sum_{i=1}^n x_i(t)$

$\mu_p(Df(t,x)) \le \lambda_2(L) - c,$ for every t, x

• trade off between internal dynamics and coupling strength

$\mu_p(Df(t,x)) \leq \lambda_2(L) - c,$ for every t,x

- trade off between internal dynamics and coupling strength
- f time-invariant: every trajectory converges to an equilibrium point in $\mathbb{1}_n \otimes \mathbb{R}^k$.

$\mu_p(Df(t,x)) \le \lambda_2(L) - c,$ for every t, x

- trade off between internal dynamics and coupling strength
- f time-invariant: every trajectory converges to an equilibrium point in $\mathbb{1}_n \otimes \mathbb{R}^k$.
- f periodic: every trajectory converges to a periodic orbit in $\mathbb{1}_n \otimes \mathbb{R}^k$.

$\mu_p(Df(t,x)) \le \lambda_2(L) - c,$ for every t, x

- trade off between internal dynamics and coupling strength
- f time-invariant: every trajectory converges to an equilibrium point in $\mathbb{1}_n \otimes \mathbb{R}^k$.
- f periodic: every trajectory converges to a periodic orbit in $\mathbb{1}_n \otimes \mathbb{R}^k$.
- Unstable dynamics f, sufficiently strong coupling $\implies \lambda_2(L)$ large \implies the network synchronizes.

- reviewed classical contraction theory
- characterization of contraction wrt non-Euclidean norms
- two extensions of classical contraction:
 - weak contraction
 - semi-contraction
- dichotomy in asymptotic behavior of weakly-contracting systems
- convergence to invariant subspaces for semi-contracting systems

- contraction-based compositional analysis of interconnected systems
 - scalable stability certificates using non-Euclidean contraction.
- computing equilibra of contracting and weakly-contracting systems
 - explicit and implicit integration algorithms
 - accelerated convergence.
- optimization algorithms using contraction theory
 - extension to gradient descent algorithms and time-varying algorithms.
 - connection with discrete-time algorithms for optimization.
- robustness of artificial neural networks using contraction theory
 - use contraction condition for input-output robustness.