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Large-scale nonlinear networks

Introduction

=

Transportation networks Brain neural network Learning-based systems
@ large penetration of inteligent units in power and transportation networks

@ increasing deployment of neural networks in safety-critical systems

@ Brain neural networks consist of billions of neurons interacting with each other

societal autonomous systems are becoming large-scale with
interconnected and nonlinear components

Many networks in nature are extremely large and nonlinear

Goal: to analyze, monitor, and control these large-scale networks J
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Large-scale nonlinear networks
Challenges

What are the issues with the classical stability and control approaches?
(Lyapunov-based methods) J

@ computing the equilibria or operating points

@ computationally heavy for large-scale networks with varying parameters

@ /9-norm-based conditions

o LMI and SOS are not scalable for large networks

@ reduction to low-dimensional submanifolds

o No systematic approach for convergence to subspaces or submanifolds
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Presentation outline

@ non-Euclidean contraction theory

o definition and basic properties
o differential and integral characterizations

@ weakly-contracting systems

o definition and examples
o dichotomy in asymptotic behavior
o example: distributed primal-dual

@ semi-contracting systems

o definition and examples
@ convergence to invariant subspaces

o example: diffusively-coupled oscillators

S. Jafarpour (Georgia Tech) Weak and Semi-contractions April 26, 2023 5 /30



Non-Euclidean contraction theory
A framework for stability analysis

Definition (Contraction)

& = f(t,x) is contracting wrt || - || if
the distance between every two trajectory is decreasing exponentially with rate ¢ wrt || - ||

ct

| T /f unit disk with radius e~
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Non-Euclidean contraction theory
A framework for stability analysis

Definition (Contraction)

& = f(t,x) is contracting wrt || - || if
the distance between every two trajectory is decreasing exponentially with rate ¢ wrt || - ||

Ordered transient and asymptotic behaviors:

unique globally exponential stable equilibrium

ct

efficient equilibrium point computation

g unit disk with radius e~

@ input-output robustness

modularity and interconnection properties T ) ﬁ\h ﬂt\‘ N
| SEghe

S. Jafarpour (Georgia Tech) Weak and Semi-contractions April 26, 2023 6 /30



Non-Euclidean contraction theory

Historical references

@ B. P. Demidovich. Dissipativity of a nonlinear system of differential equations.
Uspekhi Matematicheskikh Nauk, 16(3(99)):216, 1961

@ Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear
systems.
Automatica, 34(6):683-696, 1998

@ Differential framework: F. Forni and R. Sepulchre. A differential Lyapunov framework for contraction

analysis.
IEEE Trans. Autom. Control, 59(3):614-628, 2014

@ Non-Euclidean contraction: S. Coogan. A contractive approach to separable Lyapunov functions for
monotone systems.
Automatica, 106:349-357, 2019

@ Review: M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization
of complex networks via contraction theory.
In Complex Systems and Networks: Dynamics, Controls and Applications, pages 313-339. Springer, 2016

@ Review: Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction
and some open problems.
In Proc CDC, pages 3835-3847, Dec. 2014
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Non-Euclidean contraction theory

Differential and Integral characterizations

Differential condition [

Logarithmic norm

Given a matrix A € R™™" and a norm || - ||:

| I + hA| -1
A):= lim ——
i (4) = ~ oot h
@ Directional derivative of norm || - || in

direction of A,

MZ(A) = l/\maX(A -+ AT)
pi(A) = I (aj; + Z |a”

too(A) = max a”—f—z agj))

'A. Davydov, S. Jafarpour, F. Bullo, TAC 2022
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Non-Euclidean contraction theory

Differential and Integral characterizations

Differential condition Integral condition

-

Logarithmic norm

Weak pairing!

Given a matrix A € R™*" and a norm || - [|: Given a norm || - ||, the associated weak

pairing is [+, -] : R" x R" — R:

H-| (A4) := hm+ ”I—i_hhAH_l @ Subadditive and weakly homogeneity
0 @ Positive definite
e Directional derivative of norm || - || in @ Cauchy-Schwarz inequality
direction of A, o [z,2] = ||=|?
T
/-LZ(A) = l/\max(14 +A ) [[m)y]b = yng
pi(A) = b (aj; + Z |az] [z, ], = sign(y) "z
foo(A) = maX am + Z ’azﬂ Lz y]]oo = () P

Io(z) = {i | |zi] = [|z[ o0}
IA. Davydov, S. Jafarpour, F. Bullo, TAC 2022
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Non-Euclidean contraction theory

Differential and Integral characterizations

(Theorem®

& = f(t,x) is contracting wrt || - || with rate c iff

Differential: | (D f(t, 7)) < —c, for all x,t

Integral:  [f(t,2) = f(t,y) o —y] < —clz—yl%,  forall a,y,¢

v

2 A. Davydov, S. Jafarpour, F. Bullo, TAC 2022
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Non-Euclidean contraction theory

Differential and Integral characterizations

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

S Bonsin Mot

g

f is a contracting vector field wrt to || - |2 R
. iff . Convex Analysis
— f is a strongly monotone operator wrt to the inner product (-, -). and Monotone
Operator Theory

in Hilbert Spaces

@ springer
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Non-Euclidean contraction theory

Differential and Integral characterizations

& = f(x,u) is contracting wrt || - || with rate c iff
Differential: | (D f(z, ) < —e, for all z,u
Integral:  [f(e,u) — fnu),z—y] < —clz—yls  forall z,yu

@ Connection between contraction theory and monotone operator theory

S Bonsin Mot

. . , <

f is a contracting vector field wrt to || - || R

i iff . Convex Analysis
—f is a strongly monotone operator wrt to the weak pairing [, -]. and Monotone
Operator Theory

in Hilbert Spaces

@ springer
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Non-Euclidean contraction theory

Application to large-scale networks

Challenge: many real-world networks are not contracting.

conservation law: 1! z(t) = const invariance, symmetry: f(x + al,) = f(x)
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Non-Euclidean contraction theory
Application to large-scale networks

Challenge: many real-world networks are not contracting.

conservation law: 1 2(t) = const invariance, symmetry: f(z + al,) = f(z)
For a vector field f and positive vectors 7,§ € R%,

conservation law n' flx)=n"f(y) Yz, y = n' Dyf(z) =0 Va
translation invariance  f(x + af) = f(z) Vz,«a = D,f(z)§ =0 Vz
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Non-Euclidean contraction theory
Application to large-scale networks

Challenge: many real-world networks are not contracting.

conservation law: 1! z(t) = const invariance, symmetry: f(x + al,)
For a vector field f and positive vectors n,{ € RY,

conservation law n' flx)=n"f(y) Yz, y = n' Dyf(z) =0 Va
translation invariance  f(x + af) = f(z) Vz,«a = D,f(z)§ =0 Vz

If f satisfies a conservation or resp. invariance, then

Q@ w(D.f) >0,
Q if, additionally, f is cooperative, then iy [, (D f) = 0 or resp. fiy -1 (Dzf) =0
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Presentation outline

@ non-Euclidean contraction theory

o definition and basic properties
o differential and integral characterizations

@ weakly-contracting systems

o definition and examples
o dichotomy in asymptotic behavior
o example: distributed primal-dual

@ semi-contracting systems

o definition and examples
@ convergence to invariant subspaces

o example: diffusively-coupled oscillators
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Weakly-contracting systems
Definition and examples

Definition: Weakly-contracting systems

& = f(t,x) with f continuously differentiable in = is weakly-contracting wrt || - ||:

- (D f(t, ) <0
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Weakly-contracting systems
Definition and examples

Definition: Weakly-contracting systems

& = f(t,x) with f continuously differentiable in = is weakly-contracting wrt || - ||:

- (D f(t, ) <0

@ Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm)

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (¢1-norm
and £oo-norm)

© Daganzo’s cell transmission model for traffic networks (Daganzo, 1994), (¢1-norm)
@ compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978). (¢1-norm)

@ saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (¢2-norm)
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Weakly-contracting systems
Asymptotic behaviors

What is the asymptotic behavior of weakly-contracting systems? )
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Weakly-contracting systems
Asymptotic behaviors

What is the asymptotic behavior of contracting systems? )
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Weakly-contracting systems
Asymptotic behaviors

What is the asymptotic behavior of contracting systems? J

Classical Theorem

& = f(x) is contracting, then

@ f has a unique globally asymptotically stable equilibrium z*
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Weakly-contracting systems
Asymptotic behaviors

What is the asymptotic behavior of weakly-contracting systems? J

Theorem: Dichotomy

& = f(x) is weakly-contracting, then either

@ f has no equilibrium and every trajectory is unbounded, or

@ f has at least one equilibrium x* and every trajectory is bounded.
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Weakly-contracting systems

Bounded trajectories

& = f(x) is weakly-contracting with at least one equilibrium point z*:

(i) each equilibrium is stable
(ii) if || - || is a polyhedral norm, then every trajectory converges to the set of equilibria,

(i) =* is locally asymptotically stable = z* is globally asymptotically stable.

Idea of the proof

B.o) w(Df (z)) <0

z*is locally asym stable
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Example: Primal-dual algorithm

Distributed implementation over networks

Optimization problem: min, g f(2) = mingcge Y . fi(z). J

Distributed implementation

@ n agents locally minimize f and communicate over a undirected weighted graph G,

@ agent ¢ have access to function f; and can exchange x; with its neighbors.

n
min g fixy)
x€ERK :
=1
1 = T2 = = Tn
v
In matrix form by assuming z = (2 ,...,z,})" € R":

z€RK

min Z fz (xz)
=1

(L®Ik)x =0,N
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Example: Primal-dual algorithm

Distributed implementation over networks

If each f; is continuously differentiable in x;:

Lagrangian
E(xa V) = 2?21 fz(xz) + VT(L X Ik)w

Distributed primal-dual algorithm (component form):

S. Jafarpour (Georgia Tech) Weak and Semi-contractions
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Example: Primal-dual algorithm

¢2-norm weak contraction

Distributed primal-dual algorithm (vector form):

. oL

== o =-Vf(z) - (L Ix)v,
. oL

V= 81/ (L®Ik)

_[-VPf(@) —(Lel) ~V*f(z) (Loly] _ [-V*f(z) O
Dy(a,v) + Dy(a,v)" = (L® I) 0 k}* [—(L@Ik) 0 A]_[ 0 o]

fis convex = pua(Dg(z,v)) =0
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Example: Primal-dual algorithm
Stability and rate of convergence

@ [ is convex and has a global minimum z* € R¥,
Q@ V2f;(x) =0 for all z, and V2 f;(z*) = 0, and
© the undirected weighted graph G is connected with Laplacian L.

The distributed primal-dual algorithm
@ is weakly-contracting wrt £s-norm,
Q (z(t),v(t)) — (L, ® 2*, 1, ® v*), with v* =", 15(0),

V2f(z*) —L® Ik} ) where

exponential convergence rate is —a (
(8 ) o] g ess |: L® Ik 0

Oess(A) := max{R(X\) | A € spec(A) \ {0}}.
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Presentation outline

@ non-Euclidean contraction theory

o definition and basic properties
o differential and integral characterizations

@ weakly-contracting systems
o definition and examples
o dichotomy in asymptotic behavior
o example: distributed primal-dual

@ semi-contracting systems
o definition and examples
@ convergence to invariant subspaces
o example: diffusively-coupled oscillators

S. Jafarpour (Georgia Tech) Weak and Semi-contractions April 26, 2023 19 / 30



Semi-contracting systems
Semi-norms

How to study contraction to subspaces? J
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Semi-contracting systems
Semi-norms

How to study contraction to subspaces? )

Definition (Semi-norm)

Il is a semi-norm if
Q |[|cvl| = |elllv]ll, for every v € R™ and ¢ € R;
Q |lv+wll <[ljolll + [lwll. for every v,w € R™.
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Semi-contracting systems
Semi-norms

How to study contraction to subspaces? )

Definition (Semi-norm)

Il is a semi-norm if
Q |[|cvl| = |elllv]ll, for every v € R™ and ¢ € R;
Q |lv+wll <[ljolll + [lwll. for every v,w € R™.

e desired submanifold: Ker||-|| = {v € R™ | |||v|| = 0}.
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Semi-contracting systems
Semi-norms

How to study contraction to subspaces? )

Definition (Semi-norm)

Il is a semi-norm if
Q |[|cvl| = |elllv]ll, for every v € R™ and ¢ € R;
Q |lv+wll <[ljolll + [lwll. for every v,w € R™.

e desired submanifold: Ker||-|| = {v € R™ | |||v|| = 0}.

o Example: for k < n, R € R¥*™ and norm || - ||, we get ||z]|p = || Rz]|.
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Semi-contracting systems
Logarithmic semi-norms

Definition (Logarithmic semi-norm)

The Logarithmic semi-norm of A € R™*™ wrt |||-|||:

. |Hn + RAJ| -1
q4) = lim ——.
Hyp(4) = lim, 2
e Directional derivative of ||-|| in direction of A.

o if Ker |[-[| is invariant under A then R(X) <y (A), for every X € spec . HH”L(AT).
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Semi-contracting systems
Definition and examples

Definition (Semi-contraction)
& = f(t,x) with f continuously differentiable in  is semi-contracting wrt the semi-norm |||-|

with rate ¢ > 0:

(D2 f(t,2)) < —c¢
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Semi-contracting systems
Definition and examples

Definition (Semi-contraction)

& = f(t,x) with f continuously differentiable in  is semi-contracting wrt the semi-norm |||-|
with rate ¢ > 0:

(D2 f(t,2)) < —c¢

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (¢1-norm)
@ Chua’'s diffusively-coupled circuits (Wu and Chua, 1995), (¢2-norm)
© morphogenesis in developmental biology (Turing, 1952), (¢1-norm)

@ Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (¢1-norm)
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Semi-contracting systems
Asymptotic behavior

e & = f(t,x) is semi-contracting wrt the semi-norm |[|-|| with rate ¢ > 0, and
o (Affine invariance): f(t,z* + Ker ||-[|) € Ker |||-||| for every ¢

Q for every trajectory x(t),

lz(t) — || < e_Ct|||:1c(0) -z, for every t > 0.

@ every trajectory converges to x* + Ker |[||-|||-
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Semi-contracting systems
Asymptotic behavior

e & = f(t,x) is semi-contracting wrt the semi-norm |[|-|| with rate ¢ > 0, and
o (Affine invariance): f(t,z* + Ker ||-[|) € Ker |||-||| for every ¢

Q for every trajectory x(t),

lz(t) — || < e_Ct|||:1c(0) -z, for every t > 0.

@ every trajectory converges to x* + Ker |[||-|||-

@ partial contraction (only for £3-norms): W. Wang and J.-J. E. Slotine. On partial contraction
analysis for coupled nonlinear oscillators.

Biological Cybernetics, 92(1):38-53, 2005

@ horizontal contraction (stronger assumptions): F. Forni and R. Sepulchre. A differential Lyapunov
framework for contraction analysis.

IEEE Trans. Autom. Control, 59(3):614-628, 2014
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Example: Diffusively-coupled oscillators

Synchronization

@ n agents with states z1,...,2, € R¥ and = = (21,...,2,)"

@ identical internal dynamics f;

@ interconnected by a weighted undirected connected graph G using diffusive coupling

&y = f(t,2:) — D0y gz — x5), $€{l,...,n} )
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Example: Diffusively-coupled oscillators

Synchronization

@ n agents with states z1,...,2, € R¥ and = = (21,...,2,)"

@ identical internal dynamics f;

@ interconnected by a weighted undirected connected graph G using diffusive coupling

&y = f(t,2:) — D0y gz — x5), $€{l,...,n} )

Applications: Biological networks, Chemical reaction systems, neural networks
A canonical model for weakly coupled oscillators J
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Example: Diffusively-coupled oscillators

Synchronization

@ n agents with states z1,...,2, € R¥ and = = (21,...,2,)"

@ identical internal dynamics f;

@ interconnected by a weighted undirected connected graph G using diffusive coupling

&y = f(t,2:) — D0y gz — x5), $€{l,...,n} )

Applications: Biological networks, Chemical reaction systems, neural networks
A canonical model for weakly coupled oscillators J

Goal: asym sync limy_, ||z; — 2;]| =0 for every i, j J
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Example: Diffusively-coupled oscillators

Semi-norms for synchronization

For undirected G with Laplacian L:

The orthogonal projection IT : R — span{1, }*

n—1 1 1

n n n

1 -l _1
M=1I,-11'=| » " "l =0

1 1 n—1

n n n

o (II ® I)x measures dissimilarity of the states z;
o pon(—L) =—Az(L)
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Example: Diffusively-coupled oscillators

Semi-norms for synchronization

For undirected G with Laplacian L:

The orthogonal projection IT : R — span{1, }*

n—1 1 1
n n n
1 n—i _1
n=1,-11,17= * " "l =0
_1 o _1 n—1
n n n

o (II ® I)x measures dissimilarity of the states z;
o pon(—L) =—Az(L)

Given a norm || -

, we define
Izllngr, = (I ® Iy)z|

We have Ker| ) = 1, ® R" = synchronization
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Example: Diffusively-coupled oscillators

Similarity vs. connectivity

Two main factors in synchronization:

@ contractivity of the internal dynamics

@ strength of the diffusive coupling
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Example: Diffusively-coupled oscillators

Similarity vs. connectivity

Two main factors in synchronization:

@ contractivity of the internal dynamics

@ strength of the diffusive coupling

local-global mixed norm: (2,p)-tensor norm on R™ = R” ® R*
r 1 r
. y N 2 . .
lullay = inf { (32 1ot l31e)2)* | =Y v @ wi}.
i=1 i=1

@ Global norm: ¢5-norm for the interactions between agents

@ Local norm: /,-norm for internal dynamics of each agent
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Example: Diffusively-coupled oscillators

Semi-contraction

x‘i:f(t,xi)—zyzl aij(xi—xj), 1 E {1,...,71}

G is a connected weighted graph with Laplacian L

Suppose that

pp(Df(t, x)) < Ao(L) — ¢, for every t, x

then
@ the dynamics is semi-contracting wrt | - ||(2,5), (o 1,);
@ for every trajectory x(t),

|z(t) — 1, ® ﬁaVE(t)H(Zp),(H@Ik) < e_CtH'I(O) -1, ® $ave(0)||(2,p),(l'[®]k)-

© the system achieves synchronization: lim;_, o 2(t) = 1, ® Zaye(t)
where Zaye(t) = L 377 | z;(t)
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Example: Diffusively-coupled oscillators
Characterizing the trade-off

pp(Df(t,x)) < A2(L) —c, for every t,x |

@ trade off between internal dynamics and coupling strength
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Example: Diffusively-coupled oscillators
Characterizing the trade-off

pp(Df(t,x)) < A2(L) —c, for every t,x |

@ trade off between internal dynamics and coupling strength

e f time-invariant: every trajectory converges to an equilibrium point in 1, ® R*.
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Example: Diffusively-coupled oscillators
Characterizing the trade-off

pp(Df(t,x)) < A2(L) —c, for every t,x |

@ trade off between internal dynamics and coupling strength
e f time-invariant: every trajectory converges to an equilibrium point in 1, ® R*.

e f periodic: every trajectory converges to a periodic orbit in 1, ® R¥.
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Example: Diffusively-coupled oscillators
Characterizing the trade-off

pp(Df(t,x)) < A2(L) —c, for every t,x |

@ trade off between internal dynamics and coupling strength
e f time-invariant: every trajectory converges to an equilibrium point in 1, ® R*.
e f periodic: every trajectory converges to a periodic orbit in 1, ® R¥.

@ Unstable dynamics f, sufficiently strong coupling = \y(L) large = the network
synchronizes.
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@ reviewed classical contraction theory

characterization of contraction wrt non-Euclidean norms

@ two extensions of classical contraction:

e weak contraction
e semi-contraction

dichotomy in asymptotic behavior of weakly-contracting systems

@ convergence to invariant subspaces for semi-contracting systems
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Future research

@ contraction-based compositional analysis of interconnected systems

o scalable stability certificates using non-Euclidean contraction.

computing equilibra of contracting and weakly-contracting systems
o explicit and implicit integration algorithms
@ accelerated convergence.

optimization algorithms using contraction theory

@ extension to gradient descent algorithms and time-varying algorithms.
@ connection with discrete-time algorithms for optimization.

@ robustness of artificial neural networks using contraction theory

@ use contraction condition for input-output robustness.
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