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Neural Network Controllers

Motivations

@ Neural Networks as controllers in safety-critical applications
(examples: autonomous vehicles and mobile robots)

closed-loop system

Goal: ensure and verify safety of the J /o
gy

System

Issues with neural network controllers:

@ large # of parameters with nonlinearity %

@ sensitive wrt to input perturbations

Learning-hased Feedback

o limited closed-loop safety guarantees

Challenges

Rigorous verification and computational efficiency vs. accuracy.
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Safety Verification via Reachability Analysis

Problem Statement

System : & = f(z,w) State: z € R" Disturbance : w € W C R™

State space State space
x(T) Target
x(T)
/

T
),/1‘2' A(T) T Reachable set T Reachable set
= Overapproximation

Initial set Initial set Initial set

@ reachable sets characterize evolution of the system

RI(t, Xo) = {xw(t) | 2w(-) is a traj of the system for some w with xo € Ao} J

@ over-approximation of reachable sets for safety and verification
@ reachability of dynamical system is an old problem with several classical approaches

Classical approaches are not scalable to large-scale nonlinear systems J
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system i@ = f(z,w) is monotone!(with respect to cones K, C) if
24(0) =g yw(0) and u=<cw =  z,(t) Kk Yu(t) for all time

where < (=¢) is the partial order with induced by the cone K (cone C).

A polyhedral cone has the form

State Space
Ordered

K = {y - Rn | HKy 2 Op} = {VKy ‘ y Z Op} Trajectories
halfspace rep vertex rep ¥ o(1i0)

Monotonicity test x\j

o(1;x)

(1) HK(%(I‘,’LU) + a(z,w)I,)Vk > 0 for some a(x,w)

@ Hy gl (z,w)Ve 20

!D. Angeli and E. Sontag, “Monotone control systems”, IEEE TAC, 2003
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Monotone Dynamical Systems

Definition and Characterization

A dynamical system i@ = f(z,w) is monotone!(with respect to cones K, C) if
24(0) =g yw(0) and u=<cw =  z,(t) Kk Yu(t) for all time

where < (=¢) is the partial order with induced by the cone K (cone C).

State Space

Monotonicity test (for the standard cone ]R"ZIO)

Ordered
Trajectories

o gff:(x,w) is Metzler (off-diag > 0)

Q@ L(z,w) >0y

In this talk: monotone system theory for reachability analysis )

!D. Angeli and E. Sontag, “Monotone control systems”, IEEE TAC, 2003
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Reachability of Monotone Dynamical Systems

Hyper-rectangular over-approximations

Theorem (classical result)

For a monotone system with W = [w, W]

Rf(t7 [107E0]) - [xﬂ(t)ﬂ xﬁ(t)]

where 2, (-) (resp. xz(+)) is the trajectory with disturbance w (resp. w)

starting at x (resp. To)
Overapproximation with w
Example: 2+ .y
il’l _$§—l‘1+w o1 -
dt |xza| ) = -
—-0.5| (0.5 0 ,
— — with w
o I 1
-1 0 1 2 3 4
X
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Non-monotone Dynamical Systems
Reachability analysis

@ For non-monotone dynamical systems the extreme trajectories do not provide any
over-approximation of reachable sets

E le: I
Xxample 3 Not Overapproximation
d o] _ [#3 -z tw di B
dt |z2] 1
—0.5 0.5
_1 X ! ! ! ! \
-1 0 1 2 3 4 5

S. Jafarpour (CU Boulder) Interval Reachability of Systems with NN Controllers September 28, 2023 7/22



Mixed Monotone Theory

Embedding into a larger system
o Key idea: embed the dynamical system on R"™ into a dynamical system on R?"
@ Assume W = [w,w| and Xy = [z, To]

Original system d, d are decomposition functions s.t.

© cooperative: (z,w) — d(z,Z, w,w
Embedding system P (z,w) — d(z )

© competitive: (Z,w) — d(z, 7, w, W)

Q f(z,w)=d(z,z,w,w) for every x, w

T = d(z, T, w, D) © the same properties for d
v

The embedding system is a monotone dynamical system on R?" with
respect to the southeast partial order <gg:

[f] <SE {g] <— z<y and y<Z
x Yy

In terms of cones, <gg is induced by the cone Rgo X —Rgo.
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Mixed Monotone Theory
Versatility and History

o f locally Lipschitz = a decomposition function exists

The best (tightest) decomposition function is given by

d@(zafawaw) = mln fi(zau)7 C_lz(£7§7w7m) = H}&X _ fi(Z,U)
z€[z,7],2;=2; 2€[z,7],2;=7;
u€[w,w] u€E[w,w]

A short (and incomplete) history:

J-L. Gouze and L. P. Hadeler. Monotone flows and order intervals. Nonlinear World, 1994)

G. Enciso, H. Smith, and E. Sontag. Nonmonotone systems decomposable into monotone
systems with negative feedback . Journal of Differential Equations, 2006. J

H. Smith. Global stability for mixed monotone systems. Journal of Difference Equations
and Applications, 2008 J
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Reachability using Embedding Systems

Hyper-rectangular over-approximations

Assume W = [w, w] and Xy = [z, To] and

T = d(£7 T, w, w)’ Q(O) = 2y
F=d@azww),  0) =T \
Rcachalblc set
Then R/ (t, %) C [z(t), Z(t)] )

(Scalable) a single trajectory of embedding system provides lower bound
(z) and upper bound (T) for the trajectories of the original system. J

2Coogan and Arcak, “Efficient finite abstraction of mixed monotone systems”, HSCC, 2015.
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Reachability using Embedding Systems
Example

Embedding System:

Original System:

a4 1 _ T%_$2 4+ w
dt ol Ty

=05 0.5
W=[22,23] X= H_Og] : [0.5”

red = cooperative, blue = competitive

Decomposition function

3 —To+w

£y
d |Za| _ z wl 2.2
g | 7@ -z, +w| |w| T |23
T2 L x1
z,(0) _ [—0.5 Z1(0) _ 0.5
25(0) |—0.5 T2(0) 0.5
=[]
" RI(1, &)

=[]
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Systems with NN Controllers

A Mixed Monotone Approach

Given the open-loop nonlinear system with a
neural network controller

:t = f(aj?u’w)?
u= N(z),

study reachability of the closed-loop system

& = f(z,N(z),w) = f(z,w)

disturbance w e W —T

Challenge: find a decomposition function
for closed-loop system J

Key observation: Interval bounds for neural networks combines nicely
with mixed monotone theory for the open-loop system! J

@ Interval bounds for NN using verification algorithms (CROWN, LipSDP, IBP, etc)

Question: How to capture the interaction between NN and the system J
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Decomposition Functions for Systems
A Jacobian-based Approach

Jacobian-based: = = f(z,w) such that %5 € [i[zj],j[&,ﬂ] and % € u[w,ﬁbj@ﬂ]]' then

& Bk BB

T
€ —

a1l

7?}]+ [J[

)

(SIS

f,w,@) _ _[l[$,ﬂ]_ [l[a:,
o z,

@ Interval arithmetic allows computing Jacobian .
bounds efficiently using inclusion functions.

e npinterval3: Toolbox that implements intervals e
as native data-type in numpy. glorw) = [(a1 +x2)? sin((n —x2) /4]

Vvs.
8(x1,x2) =
[x% +2x1x2 +x%‘4sin(x1 /4) cos(xy /4) —4cos(x] /4)sin(xy /4)]T

3Harapanabhalli, Jafarpour, Coogan. “A Toolbox for Fast Interval Arithmetic in numpy with an Application to
Formal Verification of Neural Network Controlled Systems”, 2nd WFVML, ICML, 2023
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Interval Bounds for Neural Networks
Input-output Bounds vs. Functional Bounds

Input-output bounds: Given a neural network controller u = N (x)

Uz S N(Z) STz, forallzelz,7]

Functional bounds: Given a neural network controller u = N (z)

Nigz(z) < N(z) < Nz (z), forallze |z,

@ Example: CROWN*can provide both input-output and functional bounds.

CROWN functional bounds: CROWN input-output bounds:
Nz (@) = Apa® + b, Upa) = Alpz)T + Aga)Z + biza),
Nz (a) = Agzz + b3 Upz) = AT + A 2+ b g

4Zhang, Weng, Chen, Hsieh, Daniel. “Efficient neural network robustness certification with general
activation functions.” NeurlPS, 2018.
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Approach #1: Interconnection-based Approach

A pictorial explanation

Original system: Embedding system:

neural network neural network bounds

'jj:f(x7u7w)

)

open-loop system

. — i o—i s
z; = d;(z, 7,0, 7', w, W)

T; = di(z, T, V", V', w, W)

open-loop embedding system

How does the interconnection-based approach work?

@ closed-loop embedding system = interconnection of
NN interval bounds 4+ open-loop embedding system

@ NN bounds are evaluated on each edge instead of

Ule,7]

Uz, 7]

2[£z T ’E]

gl

[gizf ’f]

the whole box, i.e., we use Ulg, _ 7] and ﬂ[2157§}
instead of [, 7 and T, 7. -
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Systems with NN Controllers
Interconnection-based Approach

@ Decomposition function d, d for the open-loop system & = f(x,u, w)
@ Interval input-output bounds uy, 7, U[, 7] for the neural network controller u = N(z),

Then
d; (z, %, w, W) :E (g Z, V7w w)
where
Qi - E[L@@} ﬁl - E[I Zig]) Zi = Q[L‘;E@] ﬁi - ﬂ[@i:i@]a

is a decomposition function for the closed-loop system where v;.,, is the vector v with ith
component replaced with ith component of w.

® Jafarpour, Harapanahalli, Coogan. “Efficient Interaction-aware Interval Reachability of Neural Network

Feedback Loops”, arXiv, 2003
S. Jafarpour (CU Boulder) Interval Reachability of Systems with NN Controllers September 28, 2023 16 / 22



Approach #2: Interaction-based Approach
A pictorial explanation

Original system: Embedding system:

4{50 Fz, N (x ]— {81 e Tl [l Bl ] o |

closed-loop embedding system
closed-loop system

How does the interaction-based approach work?
H=Jyzm+ gl Aps + [Jum) Az
H=1J|,

@ Closed-loop decomposition function = Jacobian -
w7+ iwm] Awa + Ll Aps

based for f(x, N(z),w).
@ Neural Network affine functional bounds
Nz = é[@flx + O 7,
Nz = Apa® + bpa)
are used to compute the interactions.

y
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Systems with NN Controllers
Interaction-based Approach

Let af S [J[x x]vj[z,i]]' % S [l[%m’j[%ﬂ]]’ and gT{) S [l[w7m,j[w7m]]. Then

Femiml = lm- 7wl B oear el el e

[z,7]
[z,7]

is a decomposition function for the closed-loop system.

6 Jafarpour, Harapanahalli, Coogan. “Efficient Interaction-aware Interval Reachability of Neural Network
Feedback Loops”, arXiv, 2003
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Case Study: Bicycle Model
Design of the neural network

Dynamics of bicycle

Pr = voos(d+ Buz)) b= %sin(ﬁ(w))

py = vsin(é + B(uz)) v =1uy

B(ug) = arctan (lf l_; . tan(w))

n| <

) o (-8,-8) (8.-8)

Goal: steer the bicycle to the origin avoiding the obstacles J

@ offline controller: MPC with hard constraint to avoid the obstacles
@ run MPC for 65000 randomly chosen initial condition (20 sample per trajectory)
@ train a feedforward neural network 4 — 100 — 100 — 2 with this data
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Case Study: Bicycle Model

Numerical Experiments

e start from (8, 8) toward (0,0)
o Xy = [z, To| with

zy=(7.95 6.95 —2X—0.01 1.99)"

o = start
o T o = destination
To=(8.05 7.05 —2F+0.01 2.01) o)
@ CROWN for verification of neural network
v
81 runtime: 0.028 + 0.003 8{ runtime: 0.031 + 0.001 81 runtime: 0.047 +0.002
6 1( 6 6
Py4 |£I py4 4
0 0 - 0
0.0 2.5 5.0 7.5 00 25 5.0 7.5 0.0 2.5 5.0 7.5
Px Px Px
naive combination interconnection interaction
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Conclusions

@ reachability using mixed monotone theory

@ mixed monotone theory for reachability of NN controlled systems
@ two methods for capturing the interaction between system and NN controller

@ interconnection-based approach
@ interaction-based approach

Future directions:

o forward invariance of systems with NN controllers
@ design of suitable correction actions

@ ensuring safety in the training of NN
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Embedding System for Linear Dynamical System

A structure preserving decomposition

o Metzler/non-Metzler decomposition: A = [ A7 4- | A|M7!

2 0 -1 2 0 0 0 0 —1
@ Example: A=|1 -3 0| = (A" =11 -3 0 [AMZA = {0 0 0
0 0 1 0 0 1 0 0 O

Linear systems

Original system
= Az + Bw ..@

Embedding system

Z: [A“leg_i_ LAJMZIE_FB—&—M_I_B—E
z=[AM7Z + |AMz + B*w+ B w
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