Resilience of Input Metering in Dynamic Flow Networks

Saber Jafarpour and Samuel Coogan

Decision and Control Laboratory Georgia Institute of Technology

June 8, 2022

Introduction: Flow Networks

Definition and Examples

• Flow of a commodity through the network

commodity=electric power

commodity=vehicles

commodity=water

 $x_i = \text{density of the commodity at } i \text{th compartment}$

$$\dot{x}_i = F_i^{\mathsf{in}}(x) - F_i^{\mathsf{out}}(x),$$

 $F_i^{\text{in}}(x)$, $F_i^{\text{out}}(x)$: inflow and outflow to compartment i

Input Metering

Definition and Examples

Design suitable input strategy that perform a desired task

Input metering strategy are mostly designed for a nominal setting

• Traffic networks: ramp metering (in practice often not closed-loop)

Transient Perturbations

Examples and Effect on Input Metering

Uncertainties can compromise the performance of input metering strategies

- Traffic networks:
 - weather condition, driving behavior
 - reduced road capacity and congestion
- Power grids:
 - line tripping, consumption patterns
 - blackouts and cascading failures
- Water networks:
 - precipitation, pipe leakage
 - water supply disruption

Challenge

Robustness of the input metering strategy wrt to transient perturbations

Dynamic Flow Networks

Modeling: supply and demand functions

- ullet network of ${\cal L}$ compartments
- commodity flows from compartment to compartment
- ullet some compartments $\mathcal{R}\subset\mathcal{L}$ take input from the environment
- density in compartment i is $x_i \in [0, \overline{x}_i]$ with capacity \overline{x}_i .

$$\dot{x}_i = F_i^{\mathsf{in}}(x, u) - F_i^{\mathsf{out}}(x) := f_i(x, u),$$

Demand and supply of compartment i

Dynamic Flow Networks

Modeling: Input metering and FIFO routing

$$\mathcal{L} = \overbrace{\mathcal{R}}^{\text{inputs}} \bigcup_{\mathcal{O}}^{\text{others}}$$

Input metering

$$F_i^{\text{in}}(x) = \min\{u_i, s_i(x_i)\}\$$

Fixed routing ratios

$$F_i^{\text{in}}(x) = R_i^v \sum_{j \in \mathcal{L}_v^{\text{in}}} F_j^{\text{out}}(x_j)$$

Conservation of flow

$$\sum_{i \in \mathcal{L}_v^{\text{out}}} R_i^v \le 1$$

First-In-First-Out (FIFO rule)

$$F_j^{\text{out}}(x) = \alpha^v(x)d_j(x_j),$$

$$\alpha^v(x) = \min_{l \in \mathcal{L}_v^{\text{out}}} \left\{ 1, \frac{s_l(x_l)}{R_l^v \sum_{k \in \mathcal{L}_v^{\text{in}}} d_k(x_k)} \right\}$$

- Compartment j is in **congestion** if $\alpha^v(x) < 1$
- Compartment j is in **free-flow** if $\alpha^v(x) = 1$

Input Metering

Resilience wrt to transient perturbations

Given an input metering strategy u:

Before perturbation

$$\dot{x}_i = F_i^{\text{in}}(x, u) - F_i^{\text{out}}(x)$$
$$0 \to t_0$$

During perturbation

$$\dot{x}_i = F_i^{\text{in}}(x, u) - F_i^{\text{out}}(x) + \delta_i(x)$$
$$t_0 \to t_1$$

After perturbation

$$\dot{x}_i = F_i^{\text{in}}(x, u) - F_i^{\text{out}}(x)$$
$$t_1 \to \infty$$

$$\delta(x) = [\delta_1(x), \dots, \delta_n(x)]^{\top}$$
 is an arbitrary transient perturbation

Main question

Can the system recover from the transient perturbations?

Problem Statement

Is $x(t_1)$ in the region of attraction (ROA) of the desirable operating point of the flow network?

Aside: Contractive and Monotone Systems

Contractive vs. weakly-contractive

Dynamical system $\dot{x} = \mathsf{G}(x)$ on \mathbb{R}^n is

- contractive if its flow is a contracting map
- weakly-contractive if its flow is a non-expansive map
- monotone if its flow preserves the partial ordering \leq on \mathbb{R}^n

Monotone Domain

Definition and Properties

Monotone domain

$$\mathcal{M} = \{x \in [\mathbb{O}_{\mathcal{L}}, \overline{x}] \mid F_i^{\mathsf{out}}(x) = d_i(x_i), \text{ for } i \in \mathcal{L}_v^{\mathsf{in}} \text{ with } v \text{ div. junction } \}.$$

• Intuition: the upstreams of diverging junctions are in free-flow inside ${\cal M}$

Theorem: flow networks on monotone domain

For input metering u, flow network on $\mathcal M$

- **1** is monotone = the commodities preserve the partial ordering
- 2 is weakly-contracting wrt ℓ_1 -norm $=\sum_{i=1}^{|\mathcal{L}|}|x_i|$ is non-increasing
- **1** has a unique free-flow equilibrium point $x^*(u)$ if $u \in \mathcal{U}^{\text{feasible}}$;

Under-approximation of ROA

Weak-contractivity

Theorem: dichotomy for asymptotic behaviors

For a weakly-contracting system $\dot{x} = G(x)$, either

- G has no equilibrium and every trajectory is unbounded, or
- **Q** G has at least one equilibrium x^* and every trajectory is bounded,
 - if the norm $\|\cdot\|$ is a p-norm, $p\in\{1,\infty\}$ and G is piecewise real analytic, then every trajectory converges to the set of equilibria,

Corollary

If $u \in \mathcal{U}^{\mathrm{feasible}}$, then any invariant set in \mathcal{M} is inside ROA of $x^*(u)$

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. *IEEE Transactions on Automatic Control*. Feb. 2021

Invariant Subsets of Monotone Domain

Algorithm via Monotonicity

Key idea

Monotone extension h of f obtained by:

$$\alpha^{v}(x) \mapsto \beta^{v}(x) = \begin{cases} \alpha^{v}(x) & x \in \mathcal{M}, \\ 1 & x \notin \mathcal{M}. \end{cases}$$

$$f(x,u) \mapsto h(x,u)$$

- h is monotone on $[\mathbb{O}_{|\mathcal{L}|}, \overline{x}]$
- ullet h is weakly-contracting on $[\mathbb{O}_{|\mathcal{L}|},\overline{x}]$
- f(x,u) = h(x,u) for every $x \in \mathcal{M}$

Theorem: ROA of flow networks

Let $t \mapsto y(t)$ be the solution to

$$\dot{y} = h(y, u),$$

 $y(0) = \overline{x}$

and let $t^* = \min\{t \in \mathbb{R}_{\geq 0} \mid y(t) \in \mathcal{M}\}$

- $② \ [\mathbb{O}_{|\mathcal{L}|}, y(t^*)] \text{ is an invariant set in } \mathcal{M}$
- **3** every trajectory of f starting from $[\mathbb{O}_{|\mathcal{L}|}, y(t^*)]$ converges to $x^*(u)$.

Corollary

For networks with no div. junction, $x^*(u)$ is globally stable

Invariant Subsets of Monotone Domain

Algorithm via Monotonicity

Sketch of the proof

- **2** weakly-contractive: the trajectory converges to $x^*(u)$
- $oldsymbol{3}$ the trajectory crosses the boundary of $\mathcal M$ at $y(t^*)$
- **4** monotone: the box $[0, y(t^*)]$ is an invariant set

Example: Cyclic Flow Network

For
$$i \in \{1, \dots, 4\}$$

$$x_i \in [0, 30]$$

$$d_i(x_i) = x_i$$

$$s_i(x_i) = 30 - x_i$$

routing ratios

$$R_i^v = \begin{cases} \frac{1}{2} & i = 2, 4, \\ 1 & i = 1, 3 \end{cases}$$

Dynamics of the system

$$\begin{split} \dot{x}_1 &= \min\{u, 30 - x_1\} - x_1 \min\{1, \frac{30 - x_3}{x_1 + x_2}\}, \\ \dot{x}_2 &= \frac{1}{2} \min\{x_3, \frac{30 - x_2}{2}, \frac{30 - x_4}{2}\} - x_2 \min\{1, \frac{30 - x_3}{x_1 + x_2}\} \\ \dot{x}_3 &= \min\{x_1 + x_2, 30 - x_3\} - \min\{x_3, \frac{30 - x_2}{2}, \frac{30 - x_4}{2}\} \\ \dot{x}_4 &= \frac{1}{2} \min\{x_3, \frac{30 - x_2}{2}, \frac{30 - x_4}{2}\} - x_4 \end{split}$$

Example: Cyclic Flow Network

Equilibrium points

Input metering u=5, **two** stable equilibria

- free-flow equilibrium $x^* = (5, 5, 10, 5)^{\top}$
- non-free-flow equilibrium $x^{**} = (30, 30, 30, 0)^{\top}$

The monotone domain:

$$\mathcal{M} = \{ x \in \mathbb{R}^4 \mid x_3 \le \min\{\frac{30 - x_2}{2}, \frac{30 - x_4}{2}\} \}$$

Example: Cyclic Flow Network

Given the Input metering u=5,

ROA of x^*

- $t \mapsto y(t)$ solution of monotone extension starting from $(30, 30, 30, 30)^{\top}$.
- at $t^* = 11.465$ we have $y(t^*) = (15, 22.5, 15, 7.5)^{\top} \in \mathcal{M}$
- $[\mathbb{O}_4, (15, 22.5, 15, 7.5)^{\top}]$ is in the region of attraction of x^*

ROA of x^{**}

Starting from $x = (20, 20, 15, 5)^{T}$, system converges to x^{**}

Conclusions

- introduced dynamical flow networks
- region of attraction to understand the effect of transient perturbations
- weak-contractivity and monotonicity of dynamical flow networks
- under-approximate the region of attraction

Thank you for your attention!