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Introduction: Flow Networks

Definition and Examples

@ Flow of a commodity through the network

AN
o)

commodity=electric power commodity=vehicles commodity=water

x; = density of the commodity at ith compartment
iy = Fl'”(x) _ FiOUt((E), \ i (\/
Fin(z), F*'*(z): inflow and outflow to compartment i % FP(z)
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Input Metering

Definition and Examples

Design suitable input strategy that perform a desired task
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Input metering strategy are mostly designed for a nominal setting J

e Traffic networks: ramp metering (in practice often not closed-loop)

Jafarpour and Coogan (Georgia Tech) Resilience of Input Metering June 8, 2022 3/17



Transient Perturbations
Examples and Effect on Input Metering

Uncertainties can compromise the performance of input metering strategies J

@ Traffic networks:

e weather condition, driving behavior
e reduced road capacity and congestion

@ Power grids:

o line tripping, consumption patterns
e blackouts and cascading failures

© Water networks:
e precipitation, pipe leakage
e water supply disruption

Challenge

Robustness of the input metering strategy wrt to
transient perturbations
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Dynamic Flow Networks
Modeling: supply and demand functions

network of £ compartments
commodity flows from compartment to compartment
some compartments R C L take input from the environment

density in compartment i is x; € [0, T;] with capacity ;.

b = FNw,u) — F*(a) = fila, ),

Demand and supply of compartment ¢ s
d;
(demand) x; — di(z;) increasing
(supply) x; > 8i(x;) decreasing Flow

/ Density
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Dynamic Flow Networks

Modeling: Input metering and FIFO routing

inputs  others
~ =~ =
£="R U0

Input metering

Fz-in(ﬂv) = min{u;, s;(z;)}

Fixed routing ratios
Fiin(l”) — R;) Zjeﬁivn Fjout(wj)

Conservation of flow

Zieﬁgut Ry <1
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First-In-First-Out (FIFO rule)
F7(z) = o (2)d;(x;),

Sl(:L'l)

a’(x) = min < 1,
( ) leLout { R;’ Zkeﬁi}‘ dk(:vk) }

e Compartment j is in congestion if a¥(x) < 1

e Compartment j is in free-flow if a’(z) =1
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Input Metering
Resilience wrt to transient perturbations

Given an input metering strategy u:

Before perturbation During perturbation After perturbation
& = F{*(w,u) — F™() | &= FP (@, w) = FP(e)+6i(2)] & = (2, u) — 7™ ()

0 —to to — 11 t1 —

§(x) = [61(x),...,8,(x)]" is an arbitrary transient perturbation

Main question
Can the system recover from the transient perturbations?

Problem Statement

Is z(t1) in the region of attraction (ROA) of the desirable
operating point of the flow network?
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Aside: Contractive and Monotone Systems

Contractive vs. weakly-contractive

Dynamical system & = G(z) on R" is

@ contractive if its flow is a contracting map

o weakly-contractive if its flow is a non-expansive map

@ monotone if its flow preserves the partial ordering < on R"

—ct

Z0 ”/‘ unit disk with radius e
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Monotone Domain
Definition and Properties

Monotone domain

M = {z € [0;,7] | F*"(z) = d;i(x;), for i € L™ with v div. junction }.

Free-flow R
@ Intuition: the upstreams of diverging junctions are in ' '
free-flow inside M Freefl
ree-now

Theorem: flow networks on monotone domain

For input metering u, flow network on M
© is monotone = the commodities preserve the partial ordering

. : L : : .
@ is weakly-contracting wrt /1-norm = ZL:|1 |z;| is non-increasing

© has a unique free-flow equilibrium point z*(u) if u € yfeasible;

v
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Under-approximation of ROA

Weak-contractivity

Theorem: dic my for asymptotic behaviors

For a weakly-contracting system @ = G(x), either

@ G has no equilibrium and every trajectory is unbounded, or

@ G has at least one equilibrium x* and every trajectory is bounded,

o if the norm || - || is a p-norm, p € {1,000} and G is piecewise real analytic, then every

trajectory converges to the set of equilibria,

If u € U sPle then any invariant set in M is inside ROA of z*(u)

@ S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled

oscillators. IEEE Transactions on Automatic Control, Feb. 2021
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Invariant Subsets of Monotone Domain
Algorithm via Monotonicity

Key idea

Theorem: ROA of flow networks
Let ¢ — y(t) be the solution to

Monotone extension h of f obtained by:

o*(a) > *(a) = {‘f”(””) veM § = hly,w),
TgM. y(0) ==
f(z,u) = h(z,u)
< and let t* = min{t € R>o | y(t) € M}
@ h is monotone on [0z, 7] Q limy o0 y(t) = z*(u)

o h is weakly-contracting on [0z, 7] © [0z, 5(¢")] is an invariant set in M

/@ every trajectory of f starting from
[0z}, y(t*)] converges to x*(u).

o f(z,u) = h(x,u) for every x € M

For networks with no div. junction, z*(u) is globally stable
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Invariant Subsets of Monotone Domain

Algorithm via Monotonicity

Sketch of the proof

© red line: trajectory of monotone extension h starting from T

@ weakly-contractive: the trajectory converges to x*(u) 0

© the trajectory crosses the boundary of M at y(t*) z
@ monotone: the box [0, y(t*)] is an invariant set “
y
0
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Example: Cyclic Flow Network

Forie{1,...,4}
z; € [0,30]
di(zi) =z
Sl($l) =30 — €Ty

(2)

> > >

routing ratios
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Dynamics of the system
30—x3

#1 = min{u, 30 — z1} — 1 min{1

. 1. .o
T3 = 5 min{z3, =5

1

iy = 1 min{zs, 305%2 30-2ay

30—x2 ) 305x4 } — Zo min{l

? x1+w2 12
30—x3 }
’ r1+x2

3 = min{zq + 22,30 — 23} — min{$3’ 305@’ 305x4

}
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Example: Cyclic Flow Network

(2)

u (1) (4
(3)

Equilibrium points
Input metering u = 5, two stable equilibria
o free-flow equilibrium z* = (5, 5, 10, 5) T

o non-free-flow equilibrium z** = (30, 30, 30, 0)"

The monotone domain:

M= {z €R}| 25 < min{H522, 0501}
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Example: Cyclic Flow Network

Given the Input metering u = 5,

ROA of z*

o ¢+ y(t) solution of monotone extension starting from (30, 30, 30, 30)".
o at t* = 11.465 we have y(t*) = (15, 22.5, 15, 7.5)T € M
o [04, (15, 22.5, 15, 7.5) "] is in the region of attraction of x*

Starting from = = (20, 20, 15, 5)7, system converges to x**
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Conclusions

@ introduced dynamical flow networks
@ region of attraction to understand the effect of transient perturbations
@ weak-contractivity and monotonicity of dynamical flow networks

@ under-approximate the region of attraction
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Thank you for your attention!
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